
C:

S:

Microarchitectural Leakage Templates
and Their Application to Cache-Based Side Channels
CCS 2022

Ahmad IbrahimC Hamed NematiS,C Till SchlüterC Nils Ole TippenhauerC Christian RossowC

November 10, 2022

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Previously...

Security of
proprietary CPUs

Discovering new side channels

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 2/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 3/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 3/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 3/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 3/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 3/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Generic Description of a Side Channel

P(A): A code template

B: Distinct behaviors
• e.g. timing: B = {• fast, ◦ slow}

R(A , b): Relations between inputs, leading to a
certain behavior
• “When inputs X and Y are in relation,

then behavior •”

Leakage Template

Figure: Leakage
Template:
Cache-Timing
Side Channel

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 4/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

?

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 5/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Figure: Leakage
Template:
Cache-Timing
Side Channel

Memory address: · · · 11101010010︸ ︷︷ ︸
tag

0010010︸ ︷︷ ︸
set index

010010

Testcases

TC0 t1, s1 t1, s0

TC1 t1, s1 t1, s1

· · · · · · · · ·

TC127 t1, s1 t1, s127
x1:

fixed tag and set
x2: fixed tag,

iterate over all sets

Classification

(•) fast
x1 x2

t1, s1 t1, s1

(◦) slow
x1 x2

t1, s1 t1, s0

t1, s1 t1, s2

· · · · · ·

t1, s1 t1, s127

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 6/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Figure: Leakage
Template:
Cache-Timing
Side Channel

Memory address: · · · 11101010010︸ ︷︷ ︸
tag

0010010︸ ︷︷ ︸
set index

010010

Testcases

TC0 t1, s1 t1, s0

TC1 t1, s1 t1, s1

· · · · · · · · ·

TC127 t1, s1 t1, s127
x1:

fixed tag and set
x2: fixed tag,

iterate over all sets

Classification

(•) fast
x1 x2

t1, s1 t1, s1

(◦) slow
x1 x2

t1, s1 t1, s0

t1, s1 t1, s2

· · · · · ·

t1, s1 t1, s127

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 6/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Figure: Leakage
Template:
Cache-Timing
Side Channel

Memory address: · · · 11101010010︸ ︷︷ ︸
tag

0010010︸ ︷︷ ︸
set index

010010

Testcases

TC0 t1, s1 t1, s0

TC1 t1, s1 t1, s1

· · · · · · · · ·

TC127 t1, s1 t1, s127
x1:

fixed tag and set
x2: fixed tag,

iterate over all sets

Classification

(•) fast
x1 x2

t1, s1 t1, s1

(◦) slow
x1 x2

t1, s1 t1, s0

t1, s1 t1, s2

· · · · · ·

t1, s1 t1, s127

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 6/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Figure: Leakage
Template:
Cache-Timing
Side Channel

Memory address: · · · 11101010010︸ ︷︷ ︸
tag

0010010︸ ︷︷ ︸
set index

010010

Testcases

TC0 t1, s1 t1, s0

TC1 t1, s1 t1, s1

· · · · · · · · ·

TC127 t1, s1 t1, s127
x1:

fixed tag and set
x2: fixed tag,

iterate over all sets

Classification

(•) fast
x1 x2

t1, s1 t1, s1

(◦) slow
x1 x2

t1, s1 t1, s0

t1, s1 t1, s2

· · · · · ·

t1, s1 t1, s127

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 6/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Figure: Leakage
Template:
Cache-Timing
Side Channel

Memory address: · · · 11101010010︸ ︷︷ ︸
tag

0010010︸ ︷︷ ︸
set index

010010

Testcases

TC0 t1, s1 t1, s0

TC1 t1, s1 t1, s1

· · · · · · · · ·

TC127 t1, s1 t1, s127
x1:

fixed tag and set
x2: fixed tag,

iterate over all sets

Classification

(•) fast
x1 x2

t1, s1 t1, s1

(◦) slow
x1 x2

t1, s1 t1, s0

t1, s1 t1, s2

· · · · · ·

t1, s1 t1, s127

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 6/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

?

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-
Channel
Instance

Leakage
Template

Generative Testcase Specification

Mt1,s1 ⟨Mt1⟩$

Plumber Framework

P
lu
m
be
r

Fr
am

ew
or

k Testcase Generator/Runner

Classifier

Analyzer

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 7/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Case Studies

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

Figure 6: Case studies’ LTs with selected relations. In (a) 𝑎𝑏 means 𝑏 times inlining repetition of instruction 𝑎. In (b), #𝑛𝑖 is
inlining 𝑛𝑖 simple arithmetic, logical or nop instructions. For (a) and (b) triggering and not triggering behavior are denoted by
• and ◦, respectively. In (c), P𝑙 denotes distinguishing behaviors and 𝑙 is the number of prefetched lines. Relations must be
checked in order, the first matching relation determines the number of expected prefetches.

Table 3: Example permutation outcome. Each number rep-
resents an instruction from the initial testcase. Underlined
numbers are loads from addresses that have the same tag.

PR
1-2-3-4-5, 1-2-3-5-4, 2-1-3-4-5, 2-1-3-5-4,
4-1-2-3-5, 4-2-1-3-5, 4-3-1-2-5, 4-1-3-2-5,
5-1-2-3-4, 5-2-1-3-4, 5-3-1-2-4, 5-1-3-2-4

nPR 2-3-1-5-4, · · · , 2-3-1-4-5, · · · , 3-4-1-5-2, · · ·

(1)
�� [Mt1,s1]3 Mt2,s1 Mt3,s1

��10000
(2)

��Mt2,s1 [
Mt1,s1

]
3 Mt3,s1

��10000
(3)

��Mt2,s1 [
Mt1,s1

]
2 Mt4,s2 Mt3,s1

��10000
For every GTS, all 10,000 generated testcases show the same

behavior. Thus, the exact values of tags and sets do not matter.
E4: Word Offset Behavior. In E2, we observed that the byte

offsets of loaded addresses affect previction. To broaden our un-
derstanding, in this experiment, we leveraged GTSes as shown in
Table 4. They generate testcases for 5-load programs with all pos-
sible combinations of tags and sets (for loads targeting up to two

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 6: Transmission and error rates of sota. covert channels.

Covert channel (Element) Speed Error rate

Liu et al. [24] (L3) 600 kbit/s 1 %
Pessl et al. [35] (DRAM) 411 kbit/s 4.11 %
Maurice et al. [26] (L3) 362 kbit/s 0 %
PRF_IS 276 kbit/s 0.05 %
PRF_OS 206 kbit/s 2.1 %
PRF_CF 76 kbit/s 0.7 %
PR_FR 73 kbit/s 1.2 %
Maurice et al. [25] (L3) 751 bit/s 5.7 %
Wu et al. [52] (memory bus) 747 bit/s 0.09 %
Semal et al. [39] (memory bus) 480 bit/s 5.46 %
Schwarz et al. [38] (DRAM) 11 bit/s 0 %

I

8.2 Previction w/o Shared Memory (PR_PP)
Based on experiment E5 in § 6.2, previction may target preloaded
memory addresses and leak information in the absence of shared
memory, e.g., through Prime+Probe. The sender code of our previc-
tion-based Prime+Probe primitive PR_PP is similar to that of PR_FR.
However, in PR_PP, the receiver first loads two memory lines into
the targeted cache set before the execution of the sender code. The
receiver then probes the lines to determine the leaked bits.

8.3 Prefetching Control-Flow Leakage (PRF_CF)
PRF_CF allows leaking the control flow of a program based on
prefetching. It is based on the results of E7 in § 6.3. Fig. 8 shows an
example code of PRF_CF. The sender code has a 4-load prefetching
sequence with a fixed stride (lines 2, 5, 8, and 15). The loads are
separated by a number of arithmetic instructions. The instruction
at line 12 is conditionally executed depending on one bit of a secret
that is stored in x20 (lines 9 through 12). According to E7, the
number of executed instructions within a prefetching sequence
affects the number of prefetched cache lines. By measuring the
time required to reload a (possibly prefetched) address x1+512, the
receiver can determine whether an instruction was executed and
consequently learn the secret bit.

8.4 Prefetching on an Interrupted Seq. (PRF_IS)
Inspired by E7, we tested the effect of intermediate memory opera-
tions on prefetching. We observed that an intermediate load from
a different page leads to prefetching of additional cache lines by
a 3-load stream. PRF_IS is based on this outcome. It also allows

In the paper: 3 Leakage Templates, 4 Covert Channels

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 8/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Side-channel discovery tool (such as Scam-V1)

Code example showing side-channel leakage

Generic description of the side channel

Side-channel instances in binaries

Prior work

This paper

reveal

RQ#1: generalize✓

RQ#2: match

concrete

abstract

concrete

1 Nemati et al., “Validation of Abstract Side-Channel Models for Computer Architectures”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 9/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Searching for Instances of a Leakage Template

1. Static Analysis
Search for candidate code sections matching P(A)

2. Dynamic Analysis
For each candidate section:
Check whether different inputs fulfill relations for different behaviors
(= are distinguishable based on behavior)

Recall:

P(A): A code template

B: Distinct behaviors

R(A , b): Relations between inputs, leading to a
certain behavior Leakage Template

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 10/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Searching for Instances of a Leakage Template

1. Static Analysis
Search for candidate code sections matching P(A)

2. Dynamic Analysis
For each candidate section:
Check whether different inputs fulfill relations for different behaviors
(= are distinguishable based on behavior)

Recall:

P(A): A code template

B: Distinct behaviors

R(A , b): Relations between inputs, leading to a
certain behavior Leakage Template

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 10/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Searching for Instances of a Leakage Template

1. Static Analysis
Search for candidate code sections matching P(A)

2. Dynamic Analysis
For each candidate section:
Check whether different inputs fulfill relations for different behaviors
(= are distinguishable based on behavior)

Recall:

P(A): A code template

B: Distinct behaviors

R(A , b): Relations between inputs, leading to a
certain behavior Leakage Template

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 10/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

et al. [40]. Data-dependent loads from a lookup table may or may
not trigger the prefetcher to load certain cache lines into the cache,
depending on the resulting memory access pattern. Therefore, the
cache state of potentially prefetched cache lines indicates the exis-
tence of relations between the accessed lookup table elements and,
by extension, the processed data. Shin et al. exploit these relations
to leak the scalar of a scalar point multiplication on an elliptic curve.
In Elliptic Curve Diffie-Hellman (ECDH), a scalar represents the
private key. The attack recovers the key incrementally. The same
computation is applied to both the target scalar and a candidate
scalar. By changing the candidate scalar such that the prefetching
behavior assimilates, both scalars assimilate as well. Even though
this vulnerability is no longer present in recent OpenSSL versions,
we still consider it a reasonable case study to demonstrate that LTs
can be used to identify real-world vulnerabilities in binaries.

Approach: Combining Static and Dynamic Analysis. Shin
et al. [40] limit the scope of their search to a specific cryptographic
operation. In contrast, our starting point is the whole OpenSSL
binary. We combine static and dynamic binary analysis techniques
to search it for instances of the prefetching LT (see Fig. 6.c). First,
we scan the binary for code sections that match the code pattern
P(𝐴) of the LT. This results in a list of candidate code sections that
potentially contain a prefetching side-channel. Second, we need
to check whether a candidate section satisfies different relations
R(𝐴,𝑏) for different input values. If this is the case, we expect
the section to show input-dependent behavior, indicating a side
channel. Not all relations can be resolved statically, especially if they
refer to addresses in instruction operands. To overcome this, we
dynamically analyze the target code to learn its concrete addresses.

Performing Static Analysis. We use asmregex [5] to statically
scan the target binary for the code pattern P(𝐴) of the prefetch-
ing LT. Asmregex searches binaries for code sections that match a
specified pattern. We extended the tool by approx. 200 LoC (code
available at [36]) to support a subset of the ARM instruction set and
added support for backreferences to the pattern language. Back-
references allow to express simple relations between instructions.
For instance, two subsequent load instructions can be required to
use the same base address register. To identify code sections match-
ing P(𝐴) in OpenSSL, we convert P(𝐴) into the asmregex pattern
shown in Appendix A. This pattern matches 429 3-load sequences
across 18 OpenSSL modules. By briefly inspecting the matching
candidate sections, we identify accesses to lookup tables in 11 of
these modules. The remaining matches are predominantly caused
by operations on complex data structures. Most importantly, we
identify the code section exploited in [40] among the candidates in
the module crypto/bn/bn_gf2m.o. Further investigation of other
matches is considered out of scope.

Performing Dynamic Analysis.We proceed with the dynamic
analysis step to check a candidate code section for input-dependent
behavior using the relationsR(𝐴,𝑏) from the LT.We create a simple
wrapper program that calls the matching library function with
varying input values. This program can be used to log all (input-
dependent) loads from the relevant lookup table SQR_tb, which
spans across three cache lines in memory. We record two different
traces for each input value. First, we use Valgrind [29] and GDB
[10] to record an access trace, a list of all loads from SQR_tb during
program execution. This trace can be used to determine the expected

Table 5: Confusion matrix, comparing prefetching behavior
classification based on relations with the actual behavior.

Relation-based classification
P0 P3 undecidable

Actual
behavior

P0 66 0 0
P3 0 6 28

prefetching behavior based on the relations R(𝐴,𝑏) from the LT.
Second, we use a Flush+Reload side channel to record a cache trace.
This trace contains the cache state of the memory lines around
SQR_tb after execution. It is captured for evaluation purposes and
indicates the actual prefetching behavior of the CPU.

In order to show that the LT accurately represents the prefetching
behavior, we recorded traces for 100 random input values to the
library function. For each input value, we determined the expected
prefetching behavior using the access trace2 and compared it with
the actual behavior using the corresponding cache trace.

Evaluation. Table 5 illustrates the classification performance.
For all 66 cases where the load instructions satisfy the relations
for P0, the cache traces show that no prefetching occurred. In six
cases, the relations for behavior P3 are satisfied. The three relevant
load instructions load data from three consecutive cache lines and
the number of instructions between the load instructions (𝑛1 and
𝑛2) is within the specified bounds. In all six cases, the cache trace
shows that prefetching of three additional cache lines occurred.
In the remaining 28 cases, the relations for none of the behaviors
from the LT are satisfied. The reason is that the distances 𝑛1 and 𝑛2
between the relevant load instructions are outside the parameter
range we tested when the LT was created. We denote these cases
as undecidable cases. We note that no misclassifications occurred.

Conclusion.We successfully demonstrated that the prefetcher
of the Cortex-A53 CPU shows input-dependent behavior for the
library function under investigation. This is the base requirement
for the differential attack in [40]. The LT helped us to re-identify this
vulnerability known from the Intel architecture in ARM binary code.
In contrast to prior work, our starting point was the whole OpenSSL
code base. For code sections that closely match the LT (i.e., they
closely correspond to code and relations that Plumber encountered
during creation of the LT), the behavior classification based on the
relations is accurate. When unknown relations occur, undecidable
cases are more likely to appear. In our example, undecidable cases
occur due to higher values of 𝑛1 and 𝑛2 than we used when creating
the LT (to keep the number of test cases within a reasonable range).
However, these cases can be detected and the analyst may use them
to design further experiments in order to refine the LT in a targeted
manner. This highlights again that a LT, which can hardly be ever
complete, can be developed in an iterative fashion.

8 NOVEL LEAKAGE PRIMITIVES
Our experiments in § 6 also helped us to identify five novel prefetch-
ing based leakage primitives. For four of these primitives, we present
a minimal code example and evaluation results of its leakage speed
2As we found in § 6.3-E10 that the prefetcher only operates on cache misses, the
load instructions relevant to the prefetcher are not necessarily the first three load
instructions in the matching code section. Therefore, we perform our analysis based
on the first three loads in each access trace that target different cache lines.

In the paper: Re-identifying a known vulnerability (Shin et al.1, CCS’18):
Prefetching-based side channel in Elliptic Curve Diffie-Hellman (ECDH) code in

OpenSSL 1.1.0g

1Shin et al., “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of Information Leakage”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 11/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Plumber Use Cases and Limitations

Additional Use Cases
• Facilitate reverse engineering of microarchitectural components

• Examples in the paper: branch predictor, cache slice mapping

Limitations
• Focus on cache-based side channels
• Implemented for ARM architecture

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 12/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Plumber Use Cases and Limitations

Additional Use Cases
• Facilitate reverse engineering of microarchitectural components

• Examples in the paper: branch predictor, cache slice mapping

Limitations
• Focus on cache-based side channels
• Implemented for ARM architecture

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 12/13

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Leakage Template

• Code
• Behaviors
• Relations

Plumber Framework Case Studies

Matching Binaries

1. Static

2. Dynamic

Code
github.com/scy-phy/plumber

Till Schlüter
till.schlueter@cispa.de
tschlueter.com

(List of all resoruces
related to this paper)

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 13/13

https://github.com/scy-phy/plumber
mailto:till.schlueter@cispa.de?subject=CCS2022
https://tschlueter.com/research/publications/22-lts/
https://tschlueter.com/research/publications/22-lts/

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Leakage Template

• Code
• Behaviors
• Relations

Plumber Framework

Case Studies

Matching Binaries

1. Static

2. Dynamic

Code
github.com/scy-phy/plumber

Till Schlüter
till.schlueter@cispa.de
tschlueter.com

(List of all resoruces
related to this paper)

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 13/13

https://github.com/scy-phy/plumber
mailto:till.schlueter@cispa.de?subject=CCS2022
https://tschlueter.com/research/publications/22-lts/
https://tschlueter.com/research/publications/22-lts/

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Leakage Template

• Code
• Behaviors
• Relations

Plumber Framework Case Studies

Matching Binaries

1. Static

2. Dynamic

Code
github.com/scy-phy/plumber

Till Schlüter
till.schlueter@cispa.de
tschlueter.com

(List of all resoruces
related to this paper)

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 13/13

https://github.com/scy-phy/plumber
mailto:till.schlueter@cispa.de?subject=CCS2022
https://tschlueter.com/research/publications/22-lts/
https://tschlueter.com/research/publications/22-lts/

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Leakage Template

• Code
• Behaviors
• Relations

Plumber Framework Case Studies

Matching Binaries

1. Static

2. Dynamic

Code
github.com/scy-phy/plumber

Till Schlüter
till.schlueter@cispa.de
tschlueter.com

(List of all resoruces
related to this paper)

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 13/13

https://github.com/scy-phy/plumber
mailto:till.schlueter@cispa.de?subject=CCS2022
https://tschlueter.com/research/publications/22-lts/
https://tschlueter.com/research/publications/22-lts/

Problem Leakage Templates Plumber Framework Case Studies Matching Binaries Discussion & Conclusion

Leakage Template

• Code
• Behaviors
• Relations

Plumber Framework Case Studies

Matching Binaries

1. Static

2. Dynamic

Code
github.com/scy-phy/plumber

Till Schlüter
till.schlueter@cispa.de
tschlueter.com

(List of all resoruces
related to this paper)

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | 13/13

https://github.com/scy-phy/plumber
mailto:till.schlueter@cispa.de?subject=CCS2022
https://tschlueter.com/research/publications/22-lts/
https://tschlueter.com/research/publications/22-lts/

Backup References

Generative Testcase Specification (GTS)

Directives

Directive Description
M Memory Access
A Arithmetic/Logic Instruction
N NOP
B Branch
· · · · · ·

Operators

Operator Description
[·]n Power
#n Wildcard
⟨·⟩$ Cache line (set) mutation
P(·) Precondition
· · · · · ·

Example: Cache-Timing Side Channel

P(Mt1,s1)︸ ︷︷ ︸
Precondition: Prime cache
with a cache line in set s1

⟨Mt1⟩$︸︷︷︸
Generate one test case for each possible

set index, keep the tag index constant

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A1/5

Backup References

Generative Testcase Specification (GTS)

Directives

Directive Description
M Memory Access
A Arithmetic/Logic Instruction
N NOP
B Branch
· · · · · ·

Operators

Operator Description
[·]n Power
#n Wildcard
⟨·⟩$ Cache line (set) mutation
P(·) Precondition
· · · · · ·

Example: Cache-Timing Side Channel

P(Mt1,s1)︸ ︷︷ ︸
Precondition: Prime cache
with a cache line in set s1

⟨Mt1⟩$︸︷︷︸
Generate one test case for each possible

set index, keep the tag index constant

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A1/5

Backup References

Classifier
• Classifies test cases based on the

observed behavior
• For each behavior: produce a bit table

• Bit table: List of all test cases that
trigger a certain behavior

Bit Table

Behavior ◦
Test Case # x1 x2
1 00 01
2 00 10
· · · · · · · · ·

Analyzer
• For each bit table (= behavior): Identify common features

⇒ Extracts relations that trigger a certain behavior

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A2/5

Backup References

Classifier
• Classifies test cases based on the

observed behavior
• For each behavior: produce a bit table

• Bit table: List of all test cases that
trigger a certain behavior

Bit Table

Behavior ◦
Test Case # x1 x2
1 00 01
2 00 10
· · · · · · · · ·

Analyzer
• For each bit table (= behavior): Identify common features

⇒ Extracts relations that trigger a certain behavior

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A2/5

Backup References

Prefetching on ARM Cortex-A53
• Loads cache lines in advance that are

likely to be needed soon

Steps to Create the Leakage Template

1. Number of sequential loads

2. Intermediate instructions

3. Respecting page boundary

4. Multiple prefetching sequences

5. Cache hits

Figure: Leakage Template: Prefetching.
Pl means prefetching l lines.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A3/5

Backup References

Prefetching on ARM Cortex-A53
• Loads cache lines in advance that are

likely to be needed soon

Steps to Create the Leakage Template

1. Number of sequential loads

2. Intermediate instructions

3. Respecting page boundary

4. Multiple prefetching sequences

5. Cache hits
Figure: Leakage Template: Prefetching.
Pl means prefetching l lines.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A3/5

Backup References

Re-Identifying a Prefetching-Based Vulnerability in OpenSSL

Vulnerability (Shin et al.2 CCS’18):
Prefetching-based attack on Elliptic Curve Diffie-Hellman (ECDH) in OpenSSL 1.1.0g

1. Static Analysis
• Search for the code template from the prefetching Leakage Template
⇒ Identified 429 matching sequences across 18 OpenSSL modules

(including the target code section)

2. Dynamic Analysis
• Run code with different inputs
• Evaluate register contents against relations
⇒ Different inputs satisfy relations for different behaviors

Conclusion: Different classes of inputs are distinguishable based on prefetching
behavior.

2Shin et al., “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of Information Leakage”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A4/5

Backup References

Re-Identifying a Prefetching-Based Vulnerability in OpenSSL

Vulnerability (Shin et al.2 CCS’18):
Prefetching-based attack on Elliptic Curve Diffie-Hellman (ECDH) in OpenSSL 1.1.0g

1. Static Analysis
• Search for the code template from the prefetching Leakage Template
⇒ Identified 429 matching sequences across 18 OpenSSL modules

(including the target code section)

2. Dynamic Analysis
• Run code with different inputs
• Evaluate register contents against relations
⇒ Different inputs satisfy relations for different behaviors

Conclusion: Different classes of inputs are distinguishable based on prefetching
behavior.

2Shin et al., “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of Information Leakage”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A4/5

Backup References

Re-Identifying a Prefetching-Based Vulnerability in OpenSSL

Vulnerability (Shin et al.2 CCS’18):
Prefetching-based attack on Elliptic Curve Diffie-Hellman (ECDH) in OpenSSL 1.1.0g

1. Static Analysis
• Search for the code template from the prefetching Leakage Template
⇒ Identified 429 matching sequences across 18 OpenSSL modules

(including the target code section)

2. Dynamic Analysis
• Run code with different inputs
• Evaluate register contents against relations
⇒ Different inputs satisfy relations for different behaviors

Conclusion: Different classes of inputs are distinguishable based on prefetching
behavior.

2Shin et al., “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of Information Leakage”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A4/5

Backup References

Re-Identifying a Prefetching-Based Vulnerability in OpenSSL

Vulnerability (Shin et al.2 CCS’18):
Prefetching-based attack on Elliptic Curve Diffie-Hellman (ECDH) in OpenSSL 1.1.0g

1. Static Analysis
• Search for the code template from the prefetching Leakage Template
⇒ Identified 429 matching sequences across 18 OpenSSL modules

(including the target code section)

2. Dynamic Analysis
• Run code with different inputs
• Evaluate register contents against relations
⇒ Different inputs satisfy relations for different behaviors

Conclusion: Different classes of inputs are distinguishable based on prefetching
behavior.

2Shin et al., “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of Information Leakage”.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A4/5

Backup References

References

[1] Hamed Nemati et al. “Validation of Abstract Side-Channel Models for Computer
Architectures”. In: International Conference on Computer-Aided Verification (CAV). 2020.
doi: 10.1007/978-3-030-53288-8_12.

[2] Youngjoo Shin et al. “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). 2018. doi:
10.1145/3243734.3243736.

This presentation contains icons from (or derived from) the Fluent UI system icons collection, © Microsoft Corporation, MIT License.

Ibrahim, Nemati, Schlüter, Tippenhauer, Rossow | Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels | A5/5

https://doi.org/10.1007/978-3-030-53288-8_12
https://doi.org/10.1145/3243734.3243736
https://github.com/microsoft/fluentui-system-icons

	Problem
	Problem

	Leakage Templates
	Plumber Framework
	Case Studies
	Matching Binaries
	Discussion & Conclusion
	Appendix
	
	Backup
	References

