AsmRegex Documentation

Jordy Gennissen

Royal Holloway, University of London
jordy.gennissen@rhul.ac.uk

1 Background

This is on the why and not the how, so feel free to skip this if you’re convinced.

A lot can be concluded by looking at code, whether it’s source code or a
compiled, binary representation. However, when compiling, higher level seman-
tics get lost in the translation from source code towards binary code (or rather
assembly code). Moreover, binary code changes drastically when using a dif-
ferent cpu-family or operating system, a different compiler or even a different
version of the same compiler. In spite of this, the resulting executable should
produce the same result (and usually does).

Hence, automatically analysing this assembly code is a very complex and
error-prone task, because one approach might not work on the next version of
the same compiler. Yet, the source code might not always be available when
analysing an executable. On top of this, source code is easy to understand but
is not the code that is executed in the end. In other words, it is very useful to
be able to reason about the executed code and its assembly representation.

To do this, we chose to use a computer science approach that is well known:
regular expressions. Regular expressions are a powerful tool and widely used to
match all kinds of patterns: email address format, file format checks, matching
an IP address or grabbing html tags to name a few. Besides, regular expressions
are well-studied and so are their limitations. Matching assembly code patterns
using regular expressions almost becomes natural.

In conclusion, AsmRegex is an approach to create a more robust detection of
patterns in assembly code, by using the power of regular expressions combined
with a solid and versatile framework that can be extended to compare any
requirements one may need on assembly code. However, the real strength for
this tool is to write AsmRegexes yourself, as the entire tool relies on the strength
of the expression.

2 Assembly RegEx

As mentioned, the regular expressions to write resemble regular expressions,
with the main difference to use “assembly instruction placeholders” instead of
a normal RegEx. These placeholders are described in more detail later in this
document. A typical assembly instruction placeholder looks as follows:

<mov,>

From here onwards, matching is done like your regular regular expression. For
example, to match a potential if-statement like this

if (var == 10) {
i++;
}

A good candidate expression would be
<mov,>+<cmp,><jne,><inc,>

It might just do the trick. However this pattern is not very versatile yet and
can be heavily improved. Take a look at the next attempt:

<mov.lea,>*<mov,DR,0xa,><any,>,5<cmp,DR,DR,><jne,PV,><inc.add.,>

Due to limitations of regular expressions, matching the exact destination reg-
ister of the MOV instruction to one of the arguments of CMP is (theoretically)
impossible, but having a maximum of 5 instructions in between makes it likely
to be the if-statement.

2.1 Design choices

The AsmRegex system differs from the “regular regular expressions” in a couple
of ways.

2.1.1 Non Greedy Matching

By default, it will match every (sub)pattern in a lazy way (as opposed to greedy).
This will mean that <a>* will try to match first, will try to match

<a> next, and so on (to be changed by setting the static variable Repe-
titionTracker.laziness to False). In case a greedy match is preferred, one can add
a capital G in front of the repetition statement of the pattern string. Thus,
<a>G* will try to match as many <a>’s as possible before matching a
. Similarly, when the default is reset to be greedy, a (sub)pattern can be
set to lazy by adding the capital L.

The greediness of (sub)patterns is particularly important in the design when
using the current AssemblyMatcher.match(), because of the following design.

2.1.2 Match Starts

The AsmRegEx system will try to match from the first assembly instruction
onwards. When an instruction while matching turns out to be a JMP, the next
instruction to match will be the instruction where the unconditional jump points
to.

In the usual case that nothing matches from the given pointer, it will change
it’s start for matching towards the next assembly instruction and so on. This
does not jump on a JMP instruction. However, when a match is found:

e The matcher will stop it’s current search for this start pointer, deleting
all unexplored states for matching, and,

e the matcher will continue at the assembly instruction after the last-matched
instruction

These will filter out many duplicates and partial duplicates when matching
complex expressions. However, if the match includes any backwards “jump”
instruction, this can generate an infinite loop.

2.1.3 Non Greedy Parsing

As the name suggest, parsing in general is supposed to be non greedy or lazy
within the AsmRegex. This currently means that repetition matching is done as
in most RegEx systems (“ab™” is equivalent to “a(b*)” and not “(ab)*”). How-
ever, this differs from most RegEx OR statements, where “ab|c” in AsmRegex is
equivalent to “a(blc)” and not to “(ab)|c”. This is in contrast to most general
RegEx systems.

The next section will go into more depth on the assembly placeholder syntax
and power.

3 Assembly placeholder syntax

The assembly tag or placeholder defines a pattern to match to one single assem-
bly instruction. It always starts with a “less than” sign and always ends with a
“greater than” sign, analogous to html tags. Inside the tag, various conditions
reside, delimited with a comma.

A full tag is defined as follows:

<opcode,argl,arg2.options>

ARG1 and ARG2 are optional (and may even be non-existent in the assembly
instruction). OPCODE and OPTIONS are however mandatory. Hence, every tag
must contain at least one comma. As of yet, no additional options are imple-
mented yet. This means that every tag must end with “,>’.

Table 1: Prewritten opcode ranges

OPCODE Resulting range

any Any instruction

JC Any conditional jump (regex(’j+’) but not jmp)

JS Jumps on single conditions (je, jne, jz)

ALU Any ALU calculation instruction (add, sub, inc, dec, and, (x)or, not, (i)mul, (i)div)
SS Any ALU shift (shl, sal, hsr, sar)

RR Any ALU rotate (rol, rcl, ror, rcr)

FL Any unconditional flag set (ste, cls, cme, std, cld, sti, cli)

PU Any push instruction (push, pusha, pushf)

PO Any pop instruction (pop, popa, popf)

PP Any push or pop instruction (PU | PO)

3.1 Opcodes

The oPCODE placeholder should currently be a list of opcodes, delimited with
a dot. Some additional and non-existent opcodes have been added in capitals,
defining a standard range of opcodes. These special ones are defined in table 1.

Apart from these additional ranges of instructions, only concrete and exact
opcodes can be matched. If you feel anything is missing in this list, feel free to
add it or to let me know.

3.2 Arguments

ARG1 and ARG2 are analogous apart from the position in the assembly instruc-
tion. If no comma is set to denote the argument condition or the argument
condition is empty, it will match any argument. In other words, this:

<mov,><mov,,,>

will match on any two consecutive moves. If you want to specify a condition on
argument 2 but not on argument one, you can leave argument 1 empty:

<mov,CC,>

Note that the last comma is always necessary because specifying an (even empty)
additional condition is mandatory.

The argument condition is by default a Regular expression on its own.
However, like in the opcodes, certain standard patterns have been precompiled
to match against the usual arguments of instructions. These can be found in
table 2.

Table 2: Prewritten Argument patterns
ARGUMENT meaning

RR Referenced Register (i.e. [rax - Oxa])

DR Direct Register (i.e. ebx)

CC Concrete Constant (i.e. 1 or 0x1234)

PV (likely) Pointer Value: 0x400000 - 0x40ff

RC (likely) Random Constant: 0x9 < x < Oxfffffffe, but not a pointer ("PV)

3.3 Options

Additional options are currently not implemented yet, so there’s not much to
document at this stage.

3.4 Inverting

Both opcodes and arguments have an “invert” option, meaning they will match
on anything except the expression given. This is done by prepending a capital
to the assembly pattern. The following example will match any jump instruction
to a location that is not a constant (i.e. register or referenced register):

<JC.jmp,ICC,>

Identically, this can be used for opcodes. Adding an I a the beginning of
the opcode specification in the example above, will match on any non-jump
instruction. Note that this will automatically match opcodes too that do not
have any argument at that position®.

4 Regular expression operations

As this is a relatively simple regular expression matcher, not all options are
implemented with respect to regular expressions. For example, any lookahead
matching or non-matching expressions are not implemented.

Currently, only repetitions and OR statements are implemented. Repetitions
can be any range ({a,b}) where a or b can be left out to specify there is no
minimum or maximum respectively. The usual regular expression notation is
used (i.e. 7, *, +). As mentioned before, this matcher is lazy by default.

The OR is equally straightforward, where is will match the instruction or
subpattern before the OR delimiter(“|”) first, skipping the second half. On a
failed match, it will try to match the instruction or subpattern after the delimiter
instead.

IThis was an arbitrary design decision without a particular reason and may be changed in
the future it this simplifies our goals.

[example pattern|

(

<mov. lea ,>x
<mov,DR,0xa,> # move value 10 into a register
<any,>{,5}
<cmp ,DR,DR, >
<jne.je ,PV,>?
)G
<inc.add.,>

[example2 |
(<SS.RR.ALU.mov. lea ,>G+
<PP,>{1,2} # push or pop
){2.}

Figure 1: Example file contents

5 Loading a file

AsmRegex has the capability of loading a single file containing one or more
expressions. Every pattern has to have a unique name, given in straight brackets
([]) at the top of the pattern. Inline comments are done with a sharp ("#’),
also commonly known as a hashtag. An example pattern is shown in Figure 1.

