
IEEE European Symposium on Security and Privacy (EuroS&P) 2025

Till Schlüter, Nils Ole Tippenhauer (CISPA)

PreFence: A Fine-Grained and Scheduling-Aware
Defense Against Prefetching-Based Attacks

1. Prefetcher Attacks
Prior work uncovered side-channel vulnerabilities in
hardware data prefetchers that put user data at risk.
However, corresponding defenses have not been stud-
ied systematically before.

2. No Practical Defense So Far
No effective and efficient defense has been presented
so far. The most effective defense is to disable pre-
fetching permanently, which is impractical due to its
high performance cost for all processes.

5. PreFence Design

6. PreFence Is Effective 7. PreFence Is Efficient

PreFence enables processes to
disable prefetching temporarily
per core to prevent training ().

Processes send system calls to
announce when they execute se-
curity-critical code.

We extend the scheduler to let it
manage the prefetcher activation
state, preventing attacks across
processes and cores.

4. Systematization Findings
We identify three mandatory attack stages:

Training in the victim context,
transferring secrets into the prefetcher’s state.

Triggering in the victim or attacker context,
transferring secrets into the cache state.

Cache side-channel extraction,
transferring secrets into architectural state.

Preventing any of these stages prevents the entire
class of prefetcher attacks.

1

We show that PreFence is effective by successfully
preventing attacks from prior work, for example the
shared library attack by Shin et al. (CCS 2018).

PreFence has negligible impact on non-critical code
and performs better than permanent disabling for criti-
cal workloads.

Efficacy: PreFence mitigates the shared library attack by Shin
et al., where the prefetcher is triggered by memory accesses to
shared data and leaks secret-dependent access patterns into
the cache state. PreFence prevents this successfully.

Efficiency: The performance of PreFence depends on how it is
applied to the code of the workload. Permanent disabling (black
line) is most expensive.

3. Attack Systematization
S5. ExtractionS4. Prefetch triggerS3. Prefetcher trainingS2. ResetS1. (Offline) preparationStage

Attack

Send
signal

(Re)load &
time memory

Prepare
eviction sets

Set up array
of pointers

Identify
Flush+Reload

target lines

NOP
NOP

Load
eviction set

Flush
memory

NOP

NOP

Context
switch

NOP

Load & time
eviction sets

Aligning
at known
address

Aligning
by brute

force

Prefetcher
priming in

attacker context Prefetcher
training in

victim context
NOP

Context
switch

Prefetch
trigger in

attacker context

Prefetch
trigger in

victim context

NOP

Context
switch

PrefetchX

FetchBench

AI Sync

AI RSA

AI Var. 1

Augury OOB

Augury SLH

Augury Addr

AI Var. 2

AI SGX

Xiao et al.

Shin et al.

GoFetch

1 2 3

1

2

3

leakage

no leakage

Scheduler

1 2
SMT

P1

P2
P3
P2

P5 P4

Normal code
Security-critical code
Prefetch dis-/enable/

(Shin et al. highlighted as example)

