
PreFence: A Fine-Grained and Scheduling-Aware
Defense Against Prefetching-Based Attacks
Till Schlüter, Nils Ole Tippenhauer

IEEE European Symposium on Security and Privacy (EuroS&P) 2025

Motivation Design Considerations PreFence Conclusion

Motivation

Hardware Prefetching

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 2/16

Motivation Design Considerations PreFence Conclusion

Example: Stride Prefetching

Memory

data1

i = 0..6
access(data1[i * 3])

Program

Prefetcher

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 3/16

Motivation Design Considerations PreFence Conclusion

Example: Prefetch Attack

Memory

Process Isolation

Benign Program Attacker Program

Prefetcher

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 4/16

Motivation Design Considerations PreFence Conclusion

Defenses So Far

Targeted defenses Disable prefetching

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 5/16

Motivation Design Considerations PreFence Conclusion

Disabling Prefetching Is Expensive

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 6/16

Speedup with prefetching:
+20.3% on average

(in this use case)

Motivation Design Considerations PreFence Conclusion

Design Goals

Can we find a defense that...

...prevents prefetch attacks ...has minimal runtime overhead

...is easy to use
for developers and end users

...is compatible with
Simultaneous Multithreading (SMT)

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 7/16

Motivation Design Considerations PreFence Conclusion

Prefetching-Based Side-Channel Attacks in Prior Work

We consider 13 attacks from 7 papers:

Attack Prefetcher

1 Shin et al. [6] Intel IP stride
2 Augury [4] OOB Apple DMP
3 Augury [4] SLH Apple DMP
4 Augury [4] Addr. Apple DMP
5 AfterImage [2] Var. 1 Intel IP stride
6 AfterImage [2] Var. 2 Intel IP stride
7 AfterImage [2] SGX Intel IP stride
8 AfterImage [2] RSA Intel IP stride
9 AfterImage [2] Sync Intel IP stride

10 Xiao et al. [7] Intel IP stride
11 FetchBench [5] AES ARM SMS
12 PrefetchX [3] Intel XPT
13 GoFetch [1] Apple DMP

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 8/16

Motivation Design Considerations PreFence Conclusion

Attack Systematization

S5. ExtractionS4. Prefetch triggerS3. Prefetcher trainingS2. ResetS1. (Offline) preparationStage
Attack

Send

signal
(Re)load &

time memory

Prepare

eviction sets

Set up array

of pointers

Identify

Flush+Reload

target lines

NOP
NOP

Load

eviction set

Flush

memory

NOP

NOP

Context

switch

NOP

Load & time

eviction sets

Aligning

at known

address

Aligning

by brute

force

Prefetcher

priming in

attacker context
Prefetcher

training in

victim context
NOP

Context

switch

Prefetch

trigger in

attacker context

Prefetch

trigger in

victim context

NOP

Context

switch

PrefetchX

FetchBench

AI Sync

AI RSA

AI Var. 1

Augury OOB

Augury SLH

Augury Addr

AI Var. 2

AI SGX

Xiao et al.

Shin et al.

GoFetch

Finding: Victim process trains the prefetcher

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 9/16

Motivation Design Considerations PreFence Conclusion

Design Idea

Disable prefetching
permanently

Disable prefetching
temporarily

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 10/16

Motivation Design Considerations PreFence Conclusion

PreFence Design: Scheduling-Aware, Temporary Prefetcher Deactivation

2

1

S
M

T

Prefetcher
State

P1

on off

P2P3P2

on off on off

P5

P4

on off on

Signal: enable

prefetching

Security-critical

computation

Signal: disable

prefetching

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 11/16

Motivation Design Considerations PreFence Conclusion

Evaluation Targets

Intel i7-10510U
(Comet Lake)

Arm Cortex-A72
(Broadcom BCM2711)

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 12/16

Motivation Design Considerations PreFence Conclusion

Efficacy: Prevents Prior-Work Attacks

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 13/16

Motivation Design Considerations PreFence Conclusion

Efficiency: Negligible Overhead on Non-Critical Workloads

SPEC benchmarks perform
similarly on stock kernel and
patched kernel.

Performance difference around
±1% in most benchmarks.

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 14/16

Motivation Design Considerations PreFence Conclusion

Efficiency: Bounded Overhead on Critical Workloads

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 15/16

— Prefetching permanently
enabled:
+20.3% on average

— PreFence:
+15.8% on average

Motivation Design Considerations PreFence Conclusion

Systematization
S5. ExtractionS4. Prefetch triggerS3. Prefetcher trainingS2. ResetS1. (Offline) preparationStage

Attack

Send
signal

(Re)load &
time memory

Prepare
eviction sets

Set up array
of pointers

Identify
Flush+Reload

target lines

NOP
NOP

Load
eviction set

Flush
memory

NOP

NOP

Context
switch

NOP

Load & time
eviction sets

Aligning
at known
address

Aligning
by brute

force

Prefetcher
priming in

attacker context
Prefetcher
training in

victim context
NOP

Context
switch

Prefetch
trigger in

attacker context

Prefetch
trigger in

victim context

NOP

Context
switch

PrefetchX

FetchBench

AI Sync

AI RSA

AI Var. 1

Augury OOB

Augury SLH

Augury Addr

AI Var. 2

AI SGX

Xiao et al.

Shin et al.

GoFetch

PreFence

2

1

S
M

T

Prefetcher
State

P1

on off

P2P3P2

on off on off

P5

P4

on off on

Signal: enable

prefetching

Security-critical

computation

Signal: disable

prefetching

Evaluation

Till Schlüter
till.schlueter@cispa.de

tschlueter.com

github.com/scy-phy/PreFence
IEEE European Symposium on Security and Privacy (EuroS&P) 2025

Till Schlüter, Nils Ole Tippenhauer (CISPA)

PreFence: A Fine-Grained and Scheduling-Aware
Defense Against Prefetching-Based Attacks

1. Prefetcher Attacks
Prior work uncovered side-channel vulnerabilities in
hardware data prefetchers that put user data at risk.
However, corresponding defenses have not been stud-
ied systematically before.

2. No Practical Defense So Far
No effective and efficient defense has been presented
so far. The most effective defense is to disable pre-
fetching permanently, which is impractical due to its
high performance cost for all processes.

5. PreFence Design

6. PreFence Is Effective 7. PreFence Is Efficient

PreFence enables processes to
disable prefetching temporarily
per core to prevent training ().

Processes send system calls to
announce when they execute se-
curity-critical code.

We extend the scheduler to let it
manage the prefetcher activation
state, preventing attacks across
processes and cores.

4. Systematization Findings
We identify three mandatory attack stages:

Training in the victim context,
transferring secrets into the prefetcher’s state.

Triggering in the victim or attacker context,
transferring secrets into the cache state.

Cache side-channel extraction,
transferring secrets into architectural state.

Preventing any of these stages prevents the entire
class of prefetcher attacks.

1

We show that PreFence is effective by successfully
preventing attacks from prior work, for example the
shared library attack by Shin et al. (CCS 2018).

PreFence has negligible impact on non-critical code
and performs better than permanent disabling for criti-
cal workloads.

Efficacy: PreFence mitigates the shared library attack by Shin
et al., where the prefetcher is triggered by memory accesses to
shared data and leaks secret-dependent access patterns into
the cache state. PreFence prevents this successfully.

Efficiency: The performance of PreFence depends on how it is
applied to the code of the workload. Permanent disabling (black
line) is most expensive.

3. Attack Systematization
S5. ExtractionS4. Prefetch triggerS3. Prefetcher trainingS2. ResetS1. (Offline) preparationStage

Attack

Send
signal

(Re)load &
time memory

Prepare
eviction sets

Set up array
of pointers

Identify
Flush+Reload

target lines

NOP
NOP

Load
eviction set

Flush
memory

NOP

NOP

Context
switch

NOP

Load & time
eviction sets

Aligning
at known
address

Aligning
by brute

force

Prefetcher
priming in

attacker context Prefetcher
training in

victim context
NOP

Context
switch

Prefetch
trigger in

attacker context

Prefetch
trigger in

victim context

NOP

Context
switch

PrefetchX

FetchBench

AI Sync

AI RSA

AI Var. 1

Augury OOB

Augury SLH

Augury Addr

AI Var. 2

AI SGX

Xiao et al.

Shin et al.

GoFetch

1 2 3

1

2

3

leakage

no leakage

Scheduler

1 2
SMT

P1

P2
P3
P2

P5 P4

Normal code
Security-critical code
Prefetch dis-/enable/

(Shin et al. highlighted as example)

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 16/16

https://cispa.de/en/people/c01tisc
mailto:till.schlueter@cispa.de?subject=PreFence
https://tschlueter.com/research/publications/25-prefence/
https://github.com/scy-phy/PreFence
https://tschlueter.com/research/publications/25-prefence/

References

References I

[1] Boru Chen et al. “GoFetch: Breaking Constant-Time Cryptographic Implementations
Using Data Memory-Dependent Prefetchers”. In: USENIX Security. 2024. url: https:
//www.usenix.org/conference/usenixsecurity24/presentation/chen-boru.

[2] Yun Chen, Lingfeng Pei, and Trevor E. Carlson. “AfterImage: Leaking Control Flow Data
and Tracking Load Operations via the Hardware Prefetcher”. In: ASPLOS. 2023. doi:
10.1145/3575693.3575719.

[3] Yun Chen et al. “PREFETCHX: Cross-Core Cache-Agnostic Prefetcher-Based
Side-Channel Attacks”. In: HPCA. 2024. doi: 10.1109/HPCA57654.2024.00037.

[4] Jose Rodrigo Sanchez Vicarte et al. “Augury: Using Data Memory-Dependent Prefetchers
to Leak Data at Rest”. In: S&P. 2022. doi: 10.1109/SP46214.2022.9833570.

[5] Till Schlüter et al. “FetchBench: Systematic Identification and Characterization of
Proprietary Prefetchers”. In: CCS. 2023. doi: 10.1145/3576915.3623124.

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | A1/2

https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://doi.org/10.1145/3575693.3575719
https://doi.org/10.1109/HPCA57654.2024.00037
https://doi.org/10.1109/SP46214.2022.9833570
https://doi.org/10.1145/3576915.3623124

References

References II

[6] Youngjoo Shin et al. “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage”. In: CCS. 2018. doi: 10.1145/3243734.3243736.

[7] Chong Xiao, Ming Tang, and Sylvain Guilley. “Exploiting the Microarchitectural Leakage of
Prefetching Activities for Side-Channel Attacks”. In: Journal of Systems Architecture 139
(June 2023). doi: 10.1016/j.sysarc.2023.102877.

This presentation contains icons from (or derived from) the Fluent UI system icons collection, © Microsoft Corporation, MIT License.

Till Schlüter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | A2/2

https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1016/j.sysarc.2023.102877
https://github.com/microsoft/fluentui-system-icons

	Motivation
	Design Considerations
	PreFence
	Conclusion
	Appendix
	
	References

