" ICISPA

77 N HELMHOLTZ CENTER FOR
INFORMATION SECURITY

PreFence: A Fine-Grained and Scheduling-Aware
Defense Against Prefetching-Based Attacks

Till Schliter, Nils Ole Tippenhauer

IEEE European Symposium on Security and Privacy (EuroS&P) 2025

Motivation

. |lcispa
Motivation

Hardware Prefetching

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 2/16

Motivation

. |cispa
Example: Stride Prefetching

Program

i=20..6
| access(datall[i * 3])

@} Prefetcher

f datal

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 3/16

Motivation

. cispA
Example: Prefetch Attack

Benign Program P Attacker Program ﬁ
A A

e @; Prefetcher

O*DZDZEZEDH)@

0000

Memory

Process Isolation

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 4/16

Motivation

. |cispa
Defenses So Far

Targeted defenses Disable prefetching

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 5/16

Motivation v,

0000 ;/m\\ C | s PA
Disabling Prefetching Is Expensive

Intel Core 17-10510U

T —— Stock kernel, PF'ing enabled

[} 1.2 1 —— Stock kernel, PF'ing disabled (baseline)
g
g
g 11 - 1 . .
by - 4 - Speedup with prefetching:
2 0l = H +20.3% on average
= J_ (in this use case)
—

0.9 1

0 16 32 48 64 8 96 112 128
file size (MiB)

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 6/16

Design Considerations

. |cispa
Design Goals

Can we find a defense that...

O
...prevents prefetch attacks ...has minimal runtime overhead
...Is easy to use ...Is compatible with
for developers and end users Simultaneous Multithreading (SMT)

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 7/16

Design Considerations
0000

Prefetching-Based Side-Channel Attacks in Prior Work

We consider 13 attacks from 7 papers:

Attack Prefetcher
1 Shinetal. [6] Intel IP stride
2 Augury [4] OOB Apple DMP
3 Augury [4] SLH Apple DMP
4 Augury [4] Addr. Apple DMP
5 Afterimage [2] Var. 1 Intel IP stride
6 Afterimage [2] Var.2 Intel IP stride
7 Afterlmage [2] SGX Intel IP stride
8 Afterimage [2] RSA Intel IP stride
9 Afterlmage [2] Sync Intel IP stride
10 Xiao et al. [7] Intel IP stride
11 FetchBench [5] AES ARM SMS
12 PrefetchX [3] Intel XPT
13 GoFetch [1] Apple DMP

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks

. lcISPA

IEEE EuroS&P 2025

8/16

Design Considerations Sv,
0000 :—/m\\ CISPA
Attack Systematization
S1. (Offline) preparation | S2. Reset | S3. Prefetcher training S4. Prefetch trigger S5. Extraction

Al var. 1
Al RSA

Prefetcher
training in
victim context
(Augury Addr,
Al SGX

Finding: Victim process trains the prefetcher

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 9/16

Design Considerations
ocooe

Design Idea

\

Disable prefetching
permanently

. lcispPA

Disable prefetching
temporarily

Till Schliter, Nils Ole Tippenhauer PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 10/16

PreFence
©0000

* on off on off on off on off on
bt 2

Prefetcher
State

P1 P2 P3 P2 P5

IS Sy BL7 3

il
O
2

7

P4

. lcispa
PreFence Design: Scheduling-Aware, Temporary Prefetcher Deactivation

© Signal: disable
prefetching

7, Security-critical
computation

Q@ Signal: enable
prefetching

Till Schliter, Nils Ole Tippenhauer PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks IEEE EuroS&P 2025

11/16

PreFence

. lcisPA

Evaluation Targets
Intel i7-10510U Arm Cortex-A72
(Comet Lake) (Broadcom BCM2711)
Till Schidter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025

12/16

Till Schldter, Nils Ole Tippenhauer |

PreFence
00000

Efficacy: Prevents Prior-Work Attacks

'/|\\‘

100 150 200 250 300 350
me (rdiscp units)

(a) Intel Core i7-10510U
o e—

— © © O

clear| jeakag

set | no leakage

0 200 400 600 800 1000
time (cycles)
(b) Raspberry Pi 4 (Broadcom BCM2711,
Cortex-A72)

Figure 5. Latency of accessing the prefetch location after calling the
vulnerable OpenSSL function with the PREFENCE countermeasure not
applied (prefetch_disable flag cleared) and applied (flag set). Short access
latency indicates unwanted leakage, which is prevented by activating our
countermeasure.

countermeasure against prefetching-based side channels
enabled. This experiment serves as a baseline and shows
that the library function actually leaks information when
called with certain inputs. In the second configuration,
we set the prefeich_disable flag before calling the library
function and clear it after returning from the library
function. If PREFENCE is effective, we expect no more
prefetching leakage.

Results. We run both configurations in both evaluation
environments and present the results in Figure 5. We
repeat each configuration 1,000,000 times on the Intel
CPU and 10,000,000 times on the ARM CPU. When
the preferch_disable flag is cleared on the Intel CPU, we
observe a significantly lower latency when loading from
the memory line right after the lookup table (median:
96 units). This indicates that the prefetcher loaded this
e into the cacl

FENC)

speedup of 1.8%), which we attribute to the prefetcher
interfering with non-ideal predictions when it is enabled.

However, these measurements only reflect the per-
formance of PREFENCE in an artificial individual case.
Thus, we conduct an in-depth efficiency evaluation based
on more complex and realistic workloads in Sections 6.5
and 6.6

6.4. Efficacy: Protecting MbedTLS

Next, we show that PREFENCE successfully prevents
an end-to-end attack from prior work, namely the attack
on MbedTLS AES from the FetchBench paper [42]. As
this attack exploits ARM’s Spatial Memory Streaming
(SMS) prefetcher, we can only reproduce it on our ARM-
based platform.

Vulnerability. The SMS prefetcher divides memory
into fixed-size regions of 1 KiB each. When a load in-
struction accesses multiple cache lines within the same
region (e.g., in a loop), the prefetcher records this access
pattern in its internal state. As the vulnerable AES-128
implementation issues key-dependent accesses to lookup
tables (which span multiple such regions) during en-
cryption, key-dependent information is encoded into the
prefetcher’s state. An attacker can extract this state and
recover up to half of the secret key bits (i.e., 64 bits) using
a properly aligned (aliasing) load instruction in their own
code running on the same CPU core.

Experiment. We run two experiments: First, as a
baseline, we run the end-to-end attack on our patched
kernel, but without making any PREFENCE system calls
in the victim code. This configuration is expected to show
leakage. We record how many secret bits can be recov-
ered successfully. Second, we repeat the attack, but with
PREFENCE applied. We set the prefetch_disable flag in the
victim code before calling the AES encryption function
and clear it afterward. Again, we record the leakage.

Implementation. We build upon the proof-of- concept
code published by Sch 1

Without PreFence
With PreFence
Random guessing

llll, .l

0 8 16 24 32 40 48 56 64
number of matching bits

e

=

relative frequency

00

Figure 6. Results of the reproduction of the attack from prior work
on MbedTLS AES [42] with 200 repetitions per configuration. The
iacker i able to extract

be exiracied in 359% of the cascs When
tack is mitigated and the
of random guessing

with an average success rate of 31.8 correct key bits per
attack. The red line indicates the expected distribution for
random guessing, more precisely, a binomial distribution
with = 64 independent guesses, where each bit guess
is correct with a probability of p = 0.5. This expected
distribution closely matches the observed distribution with
PREFENCE applied. We conclude that PREFENCE suc-
cessfully mitigates this attack

Execution Time Evaluation. Finally, we also measure
the temporal overhead on the vulnerable library func-
tion caused by the lack of prefetching. To this end, we
call the function 10,000,000 times with and without the
prefetch_disable flag set and measure its execution time.
We find that the median execution time increases by
approx. 2.7% when prefetching is temporarily disabled
(from 903 to 927 cycles).

6.5. Efficiency: Non-Critical Workloads (Scenar-
ios 1 and 2)

We now investigate the efficiency of PREFENCE for
mpl Joad; g W erf

PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks |

Intel Core i7-10510U Raspberry Pi 4

8 oy Stock Ko
3 = abies

-t
107 P Ko,
- ced

0 S0 100 150 200 S0 10 1500 200

‘median ime n seconds lower is beter)

Figure 7. SPEC CPU 2017 benchmark results. Disabling the pre
pemancntly auses sigificant performanee ovehead n Renchmrks $03

“The performance overhead introduced by our patched kernel is
Neliible fo mon-sccuritycrticl worklonds

iterations, while the black error bars indicate the runtime
of the other two iterations

Comparing the two stock kernel configurations (or-
ange and blue bars), we find that the prefetcher especially
speeds up the benchmarks 502-523. At a maximum, the
prefetcher improves performance by 43% (benchmark 505
on the Intel CPU) and 37% (benchmark 502 on the
Raspberry Pi), respectively. In most other workloads, both
configurations performed similarly. In one exceptional
case, we see a slowdown by 5% caused by the prefetcher
(557 on the Raspberry Pi). Nevertheless, we conclude
that disabling the prefetcher permanently can lead to a
significant performance drop on both tested systems.

When we compare the stock kernel and the patched
kernel, both with prefetching enabled (blue and green
bars), we observe only small differences in exccution time.
For most benchmark:
19AWe con

IEEE EuroS&P 2025 |

CISPA

PreFence
00000

v,

. |CISPA

%>

Efficiency: Negligible Overhead on Non-Critical Workloads

Intel Core i7-10510U

Broadcom BCM2711 (A72)

500.
perlbench_r
502.

gee_r

505.

mcf_r

520.
omnetpp_r
523.
xalancbmk_r
525.

X264 _r

531.
deepsjeng_r
541.

leela_r

548.
exchange2_r
557.

Xz_r

benchmark

Stock Kernel,
B pFing enabled

Patched Kernel,
- PF'ing enabled

1242
1214

1505
1502

1680
1694

1000 1500 2000 0 500 1000

1500 2000

median time in seconds (lower is better)

Till Schldter, Nils Ole Tippenhauer |

PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks |

SPEC benchmarks perform
similarly on stock kernel and
patched kernel.

Performance difference around

+1% in most benchmarks.

IEEE EuroS&P 2025

14/16

PreFence

. |cispa
Efficiency: Bounded Overhead on Critical Workloads

Intel Core 17-10510U

Stock kernel, PF'ing enabled
Patched kernel, PreFence (fine-grained)
o 127 Stock kernel, PFing disabled (baseline)
g
g
S 1.1 .
5 Prefetching permanently
o
© enabled:
5 107 +20.3% on average
o
= 0o — PreFence:
' +15.8% on average

0 16 32 48 64 80 96 112 128
file size (MiB)

Till Schliter, Nils Ole Tippenhauer PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 15/16

Conclusion
°

. lcISPA

i i i 3 ine- ined and Scheduling-,
Systematization PreFence Evaluation A e e e T T

Till Schidter, Nils Ole Tippenhauer (CISPA)

Stage - .
Attack ‘ S{E(OfMine) preparation Prefetcher Attacks No Practical Defense So Far
Prior work uncovered side-channel winerabiltes in N ffectve and effcient defense has been preserted
hardware data prefetchers that put user Gata at sk 5o far. The most effecive defense s to disable pre
However,corresponding defenses have not been stu- fetching permanently. which is impractical due to ts
= "’"“";"r . ied systematically before. high performance cost for al processes.
lush.Reloa
target lines. Attack Systematization
E— = o P P Py e e— i[5 Gin
eviction sets P P2 P3P F5 =
Setuparray ¢ -
of pointers | = =
BT =
NoP e
Systematization Findings PreFence Design ¢ 3,
PreFence enables processes o [aIP
oy isable prefetching temporarly |9
wansferting ’) g
Triggering i the victimorstsckercontxt Processes send eysem call to 23
announce when they execute se. (B1°2
T & |
(Cache shis chetmef i ache We extend the scheduler o et it o]

wansierting

H Y Preventing any of these stages prevents the enre state, preventing attacks across 2’

1 chiuter s of ettt ataco rocetees and s B
PreFence Is Effective PreFence Is Efficient

We show that PreFence is effective by successfully PreFence has negligible impact on non-ritical code
preventing attacks from prior work, for example the and performs better than permanent disabling forcrit
shared library attack by Shin et a. (CCS 2018). cal workioads.

39 till.schlueter@cispa.de
@ tschlueter.com

O github.com/scy-phy/PreFence

Till Schliter, Nils Ole Tippenhauer PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks IEEE EuroS&P 2025 | 16/16

https://cispa.de/en/people/c01tisc
mailto:till.schlueter@cispa.de?subject=PreFence
https://tschlueter.com/research/publications/25-prefence/
https://github.com/scy-phy/PreFence
https://tschlueter.com/research/publications/25-prefence/

References
o0

. lcispPA

References |

[1]

2]

[3]

[4]

[5]

Boru Chen et al. “GoFetch: Breaking Constant-Time Cryptographic Implementations
Using Data Memory-Dependent Prefetchers”. In: USENIX Security. 2024. urL: https:
//www.usenix.org/conference/usenixsecurity24/presentation/chen-boru.

Yun Chen, Lingfeng Pei, and Trevor E. Carlson. “Afterimage: Leaking Control Flow Data
and Tracking Load Operations via the Hardware Prefetcher”. In: ASPLOS. 2023. por:
10.1145/3575693.3575719.

Yun Chen et al. “PREFETCHX: Cross-Core Cache-Agnostic Prefetcher-Based
Side-Channel Attacks”. In: HPCA. 2024. poi: 10.1109/HPCA57654.2024.00037.

Jose Rodrigo Sanchez Vicarte et al. “Augury: Using Data Memory-Dependent Prefetchers
to Leak Data at Rest”. In: S&P. 2022. poi: 10.1109/SP46214.2022.9833570.

Till Schluter et al. “FetchBench: Systematic Identification and Characterization of
Proprietary Prefetchers”. In: CCS. 2023. poi: 10.1145/3576915.3623124.

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025

A1/2

https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://www.usenix.org/conference/usenixsecurity24/presentation/chen-boru
https://doi.org/10.1145/3575693.3575719
https://doi.org/10.1109/HPCA57654.2024.00037
https://doi.org/10.1109/SP46214.2022.9833570
https://doi.org/10.1145/3576915.3623124

References
o0

. lcispPA
References I

[6] Youngjoo Shin et al. “Unveiling Hardware-Based Data Prefetcher, a Hidden Source of
Information Leakage”. In: CCS. 2018. poi: 10.1145/3243734.3243736.

[71 Chong Xiao, Ming Tang, and Sylvain Guilley. “Exploiting the Microarchitectural Leakage of
Prefetching Activities for Side-Channel Attacks”. In: Journal of Systems Architecture 139
(June 2023). por: 10.1016/j.sysarc.2023.102877.

This presentation contains icons from (or derived from) the Fluent Ul system icons collection, © Microsoft Corporation, MIT License.

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | A2/2

https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1016/j.sysarc.2023.102877
https://github.com/microsoft/fluentui-system-icons

	Motivation
	Design Considerations
	PreFence
	Conclusion
	Appendix
	
	References

