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Example: Stride Prefetching
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i=20..6
| access(datall[i * 3])

@} Prefetcher

f datal

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 3/16




Motivation

. cispA
Example: Prefetch Attack

Benign Program P Attacker Program ﬁ
A A

e @; Prefetcher

O*DZDZEZEDH)@

0000

Memory

Process Isolation

Till Schliter, Nils Ole Tippenhauer | PreFence: A Fine-Grained and Scheduling-Aware Defense Against Prefetching-Based Attacks | IEEE EuroS&P 2025 | 4/16




Motivation

. |cispa
Defenses So Far

Targeted defenses Disable prefetching
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Design Goals

Can we find a defense that...

O
...prevents prefetch attacks ...has minimal runtime overhead
...Is easy to use ...Is compatible with
for developers and end users Simultaneous Multithreading (SMT)
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Design Considerations
0000

Prefetching-Based Side-Channel Attacks in Prior Work

We consider 13 attacks from 7 papers:

#  Attack Prefetcher
1  Shinetal. [6] Intel IP stride
2 Augury [4] OOB Apple DMP
3 Augury [4] SLH Apple DMP
4 Augury [4] Addr. Apple DMP
5 Afterimage [2] Var. 1 Intel IP stride
6  Afterimage [2] Var.2 Intel IP stride
7  Afterlmage [2] SGX Intel IP stride
8  Afterimage [2] RSA Intel IP stride
9  Afterlmage [2] Sync Intel IP stride
10 Xiao et al. [7] Intel IP stride
11 FetchBench [5] AES  ARM SMS
12  PrefetchX [3] Intel XPT
13 GoFetch [1] Apple DMP
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Attack Systematization
S1. (Offline) preparation | S2. Reset | S3. Prefetcher training S4. Prefetch trigger S5. Extraction

Al var. 1
Al RSA

Prefetcher
training in
victim context
(Augury Addr,
Al SGX

Finding: Victim process trains the prefetcher
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Design Idea

\

Disable prefetching
permanently
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Disable prefetching
temporarily
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PreFence Design: Scheduling-Aware, Temporary Prefetcher Deactivation

© Signal: disable
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Evaluation Targets
Intel i7-10510U Arm Cortex-A72
(Comet Lake) (Broadcom BCM2711)
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Efficacy: Prevents Prior-Work Attacks
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Figure 5. Latency of accessing the prefetch location after calling the
vulnerable OpenSSL function with the PREFENCE countermeasure not
applied (prefetch_disable flag cleared) and applied (flag set). Short access
latency indicates unwanted leakage, which is prevented by activating our
countermeasure.

countermeasure against prefetching-based side channels
enabled. This experiment serves as a baseline and shows
that the library function actually leaks information when
called with certain inputs. In the second configuration,
we set the prefeich_disable flag before calling the library
function and clear it after returning from the library
function. If PREFENCE is effective, we expect no more
prefetching leakage.

Results. We run both configurations in both evaluation
environments and present the results in Figure 5. We
repeat each configuration 1,000,000 times on the Intel
CPU and 10,000,000 times on the ARM CPU. When
the preferch_disable flag is cleared on the Intel CPU, we
observe a significantly lower latency when loading from
the memory line right after the lookup table (median:
96 units). This indicates that the prefetcher loaded this
e into the cacl

FENC)

speedup of 1.8%), which we attribute to the prefetcher
interfering with non-ideal predictions when it is enabled.

However, these measurements only reflect the per-
formance of PREFENCE in an artificial individual case.
Thus, we conduct an in-depth efficiency evaluation based
on more complex and realistic workloads in Sections 6.5
and 6.6

6.4. Efficacy: Protecting MbedTLS

Next, we show that PREFENCE successfully prevents
an end-to-end attack from prior work, namely the attack
on MbedTLS AES from the FetchBench paper [42]. As
this attack exploits ARM’s Spatial Memory Streaming
(SMS) prefetcher, we can only reproduce it on our ARM-
based platform.

Vulnerability. The SMS prefetcher divides memory
into fixed-size regions of 1 KiB each. When a load in-
struction accesses multiple cache lines within the same
region (e.g., in a loop), the prefetcher records this access
pattern in its internal state. As the vulnerable AES-128
implementation issues key-dependent accesses to lookup
tables (which span multiple such regions) during en-
cryption, key-dependent information is encoded into the
prefetcher’s state. An attacker can extract this state and
recover up to half of the secret key bits (i.e., 64 bits) using
a properly aligned (aliasing) load instruction in their own
code running on the same CPU core.

Experiment. We run two experiments: First, as a
baseline, we run the end-to-end attack on our patched
kernel, but without making any PREFENCE system calls
in the victim code. This configuration is expected to show
leakage. We record how many secret bits can be recov-
ered successfully. Second, we repeat the attack, but with
PREFENCE applied. We set the prefetch_disable flag in the
victim code before calling the AES encryption function
and clear it afterward. Again, we record the leakage.

Implementation. We build upon the proof-of- concept
code published by Sch 1

Without PreFence
With PreFence
Random guessing

llll, .l

0 8 16 24 32 40 48 56 64
number of matching bits

e

=

relative frequency

00

Figure 6. Results of the reproduction of the attack from prior work
on MbedTLS AES [42] with 200 repetitions per configuration. The
iacker i able to extract

be exiracied in 359% of the cascs When
tack is mitigated and the
of random guessing

with an average success rate of 31.8 correct key bits per
attack. The red line indicates the expected distribution for
random guessing, more precisely, a binomial distribution
with = 64 independent guesses, where each bit guess
is correct with a probability of p = 0.5. This expected
distribution closely matches the observed distribution with
PREFENCE applied. We conclude that PREFENCE suc-
cessfully mitigates this attack

Execution Time Evaluation. Finally, we also measure
the temporal overhead on the vulnerable library func-
tion caused by the lack of prefetching. To this end, we
call the function 10,000,000 times with and without the
prefetch_disable flag set and measure its execution time.
We find that the median execution time increases by
approx. 2.7% when prefetching is temporarily disabled
(from 903 to 927 cycles).

6.5. Efficiency: Non-Critical Workloads (Scenar-
ios 1 and 2)

We now investigate the efficiency of PREFENCE for
mpl Joad; g W erf
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Figure 7. SPEC CPU 2017 benchmark results. Disabling the pre
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“The performance overhead introduced by our patched kernel is
Neliible fo mon-sccuritycrticl worklonds

iterations, while the black error bars indicate the runtime
of the other two iterations

Comparing the two stock kernel configurations (or-
ange and blue bars), we find that the prefetcher especially
speeds up the benchmarks 502-523. At a maximum, the
prefetcher improves performance by 43% (benchmark 505
on the Intel CPU) and 37% (benchmark 502 on the
Raspberry Pi), respectively. In most other workloads, both
configurations performed similarly. In one exceptional
case, we see a slowdown by 5% caused by the prefetcher
(557 on the Raspberry Pi). Nevertheless, we conclude
that disabling the prefetcher permanently can lead to a
significant performance drop on both tested systems.

When we compare the stock kernel and the patched
kernel, both with prefetching enabled (blue and green
bars), we observe only small differences in exccution time.
For most benchmark:
19AWe con
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Efficiency: Negligible Overhead on Non-Critical Workloads
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Efficiency: Bounded Overhead on Critical Workloads
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We show that PreFence is effective by successfully  PreFence has negligible impact on non-ritical code
preventing attacks from prior work, for example the  and performs better than permanent disabling forcrit
shared library attack by Shin et a. (CCS 2018). cal workioads.

39 till.schlueter@cispa.de
@ tschlueter.com

O github.com/scy-phy/PreFence
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