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Motivation

Hardware Prefetching
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Example: Stride Prefetching

Memory

data1

i = 0..6
access(data1[i * 3])

Program

Prefetcher
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Example: Prefetch Attack

Memory

Process Isolation

Benign Program Attacker Program

Prefetcher
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Defenses So Far

Targeted defenses Disable prefetching
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Disabling Prefetching Is Expensive
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Speedup with prefetching:
+20.3% on average

(in this use case)
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Design Goals

Can we find a defense that...

...prevents prefetch attacks ...has minimal runtime overhead

...is easy to use
for developers and end users

...is compatible with
Simultaneous Multithreading (SMT)
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Prefetching-Based Side-Channel Attacks in Prior Work

We consider 13 attacks from 7 papers:

# Attack Prefetcher

1 Shin et al. [6] Intel IP stride
2 Augury [4] OOB Apple DMP
3 Augury [4] SLH Apple DMP
4 Augury [4] Addr. Apple DMP
5 AfterImage [2] Var. 1 Intel IP stride
6 AfterImage [2] Var. 2 Intel IP stride
7 AfterImage [2] SGX Intel IP stride
8 AfterImage [2] RSA Intel IP stride
9 AfterImage [2] Sync Intel IP stride

10 Xiao et al. [7] Intel IP stride
11 FetchBench [5] AES ARM SMS
12 PrefetchX [3] Intel XPT
13 GoFetch [1] Apple DMP
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Attack Systematization

S5. ExtractionS4. Prefetch triggerS3. Prefetcher trainingS2. ResetS1. (Offline) preparationStage
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Design Idea

Disable prefetching
permanently

Disable prefetching
temporarily
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PreFence Design: Scheduling-Aware, Temporary Prefetcher Deactivation
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Evaluation Targets

Intel i7-10510U
(Comet Lake)

Arm Cortex-A72
(Broadcom BCM2711)
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Efficacy: Prevents Prior-Work Attacks
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Efficiency: Negligible Overhead on Non-Critical Workloads

SPEC benchmarks perform
similarly on stock kernel and
patched kernel.

Performance difference around
±1% in most benchmarks.
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Efficiency: Bounded Overhead on Critical Workloads
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— Prefetching permanently
enabled:
+20.3% on average

— PreFence:
+15.8% on average
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Systematization
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PreFence: A Fine-Grained and Scheduling-Aware
Defense Against Prefetching-Based Attacks

1. Prefetcher Attacks
Prior work uncovered side-channel vulnerabilities in 
hardware data prefetchers that put user data at risk. 
However, corresponding defenses have not been stud-
ied systematically before.

2. No Practical Defense So Far
No effective and efficient defense has been presented 
so far. The most effective defense is to disable pre-
fetching permanently, which is impractical due to its 
high performance cost for all processes.

5. PreFence Design

6. PreFence Is Effective 7. PreFence Is Efficient

PreFence enables processes to  
disable prefetching temporarily
per core to prevent training (    ).

Processes send system calls to 
announce when they execute se-
curity-critical code.

We extend the scheduler to let it 
manage the prefetcher activation 
state, preventing attacks across 
processes and cores.

4. Systematization Findings
We identify three mandatory attack stages:

Training in the victim context,
transferring secrets into the prefetcher’s state.

Triggering in the victim or attacker context,
transferring secrets into the cache state.

Cache side-channel extraction,
transferring secrets into architectural state.

Preventing any of these stages prevents the entire 
class of prefetcher attacks.

1

We show that PreFence is effective by successfully 
preventing attacks from prior work, for example the 
shared library attack by Shin et al. (CCS 2018).

PreFence has negligible impact on non-critical code 
and performs better than permanent disabling for criti-
cal workloads.

Efficacy: PreFence mitigates the shared library attack by Shin 
et al., where the prefetcher is triggered by memory accesses to 
shared data and leaks secret-dependent access patterns into 
the cache state. PreFence prevents this successfully.

Efficiency: The performance of PreFence depends on how it is 
applied to the code of the workload. Permanent disabling (black 
line) is most expensive.

3. Attack Systematization
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