PREFENCE: A Fine-Grained and Scheduling-Aware Defense Against
Prefetching-Based Attacks

Till Schliiter
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
till. schlueter @ cispa.de

Abstract—Speculative loading of memory, called hardware
prefetching, is common in modern CPUs and may cause mi-
croarchitectural side-channel vulnerabilities. As prior work
has shown, prefetching can be exploited to bypass process
isolation and leak secrets. However, to this date, no effective
and efficient countermeasure has been presented that secures
software on affected systems. Often, disabling prefetching
permanently is considered the only reasonable defense, de-
spite the significant performance penalties this entails.

In this work, we propose PREFENCE, a fine-grained and
scheduling-aware defense against prefetching-based attacks
for any platform where the prefetcher can be disabled.
PREFENCE extends the process scheduler to be aware of
security requirements of individual processes and to manage
the prefetcher’s state to protect against malicious parallel
processes, even on SMT-enabled platforms. This allows us to
efficiently disable the prefetcher only during security-critical
operations, with a single system call. Library and application
developers can protect their code with minimal changes, and
users can protect entire legacy applications using a wrapper
program.

We implement our countermeasure for an x86_64 and
an ARM processor. We evaluate PREFENCE on two attacks
from prior work and find that it reliably stops prefetch
leakage with low performance overhead (less than 3%)
on the vulnerable functions. In addition, we observe that
PREFENCE causes only negligible performance impact when
no security-relevant code is executed. Finally, we evaluate
the performance of a real-world web-server application that
uses PREFENCE to protect security-critical code for HTTPS
handling. Compared to disabling the prefetcher permanently,
we find that our countermeasure allows the application
to significantly benefit from the prefetcher (running up to
15.8% (Intel) and 7.2% (ARM) faster on average), while at
the same time achieving the same security.

1. Introduction

Prefetching is an optimization mechanism in modern
CPUs that aims to bring relevant chunks of memory into
the cache before they are actually loaded by application
code. Ideally, this allows applications to benefit from
lower memory latency. There are two types of prefetching:
software prefetching and hardware prefetching. Software
prefetching relies on explicit hints issued by application
software that indicate which memory locations are likely
to be accessed in the near future. In contrast, hardware

Nils Ole Tippenhauer

CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
tippenhauer@cispa.de

prefetching is an automatic and fully transparent mecha-
nism that analyzes memory accesses at runtime, tries to
detect regular or recurring patterns, and tries to predict
memory locations that are likely to be accessed soon.

Hardware prefetching can be further divided into ad-
dress-based approaches and data memory-dependent ap-
proaches. Address-based prefetchers monitor the accessed
memory addresses and attempt to identify specific access
patterns to predict the next addresses to be accessed. When
secret-dependent memory accesses occur, these accesses
may leave traces in the prefetcher’s internal state [10],
[42]. Afterward, the prefetcher’s predictions may correlate
with the secret. An attacker can then observe traces of the
prefetcher’s activities in the cache and infer the secret.
In contrast, data memory-dependent prefetchers (DMPs)
derive their predictions from values loaded from memory.
Thus, DMPs cause leakage when they observe secret-
dependent values and process them [8], [40]. Again, at-
tackers can infer the secrets by observing the prefetcher’s
behavior and the resulting modifications to the cache state.

Prior work has shown that prefetcher-based side chan-
nels can be exploited to compromise, e.g., Diffie-Hellman
keys [8], [44], RSA private keys [8], [10], or AES
keys [42], [51]. In addition, covert channels have been
presented [10], [12], [38], [42], in some cases bypassing
process isolation guarantees. No defense has been pre-
sented to date that protects against such attacks effectively
and efficiently. For instance, while most platforms allow
hardware prefetchers to be completely disabled, this mea-
sure has a significant performance impact, as non-security-
relevant code can no longer benefit from prefetching.

In this paper, we propose PREFENCE, our novel coun-
termeasure that allows user-space code to defend itself
against the perils of hardware prefetching on affected
CPUs with minimal overhead. With PREFENCE, processes
gain fine-grained control over the prefetcher. Processes
indicate to the scheduler when security-relevant operations
are executed, so that the kernel can disable prefetchers
temporarily. This signaling requires only minimal code
changes and can be integrated at different levels. For
example, when integrated at library level, all applications
that use the respective library benefit from PREFENCE
automatically. Alternatively, signaling can be integrated
into application code or even be performed manually on a
per-process basis by the user. Our solution has negligible
performance overhead on non-security-critical workloads.
For an application containing security-critical code sec-
tions, we find that our countermeasure allows the applica-



tion to run up to 15.8% (Intel) and 7.2% (ARM) faster on
average compared to disabling prefetching permanently.
We systematically analyze existing side-channel at-
tacks that exploit hardware prefetching, identify their dif-
ferences and similarities, and find suitable entry points for
defenses. Based on these insights, we design, implement
and evaluate PREFENCE, an enhancement to the process
scheduler to make it security-aware. Our approach en-
ables processes to ask the kernel to disable the prefetcher
temporarily during security-critical operations. We also
address the challenges arising from process scheduling
and related to multi-core processing and Simultaneous
Multithreading (SMT). As a software-based mitigation,
PREFENCE leverages the widespread support of proces-
sors to control the prefetcher at runtime and does not
require further hardware adaptations. We focus on defend-
ing processes against falling victim to side-channel attacks
based on hardware prefetching, as those attacks directly
expose secrets from the victim’s context; we exclude
covert channels, as those can merely be used to transfer
information that is already accessible to the attacker.
Contributions. We make the following contributions:

o We systematize existing prefetching-based side chan-
nel attacks and identify their similarities and dif-
ferences. We identify 5 main stages and map each
attack’s flow to those stages, demonstrating that there
are core components required by all attacks.

« We design PREFENCE, which enables the mitigation
of prefetching-based attacks in a fine-grained manner.
Our solution enhances the scheduler to be security-
aware, managing prefetcher state for all processes.

e We implement and evaluate PREFENCE for an
x86_64 and an ARM processor. We demonstrate that
PREFENCE prevents two prior-work attacks, that its
performance impact is negligible for non-security-
critical workloads, and that a security-critical work-
load performs significantly better with PREFENCE
compared to prefetching being permanently disabled.

Availability. We provide an open-source implementa-
tion of PREFENCE at https://github.com/scy—-p
hy/PreFence.

2. Background

2.1. Caches and Hardware Prefetching

Caches. Modern processors aim to reduce the effective
latency of memory accesses by maintaining caches. A
cache is a fast and small temporary storage that stores
frequently or recently used chunks of memory. These
chunks are called cache lines and have a fixed size.
When a program loads data from a memory address, the
processor first checks whether the data is present in a
cache (cache hit) or not (cache miss). In case of a hit, the
load instruction is significantly faster. Otherwise, the data
needs to be fetched from DRAM, which takes more time.

Hardware Prefetching. Apart from chunks of mem-
ory that have been used in the past, modern processors
may also bring chunks of memory into the cache that
are likely to be accessed in the near future. To this
end, a hardware unit of the processor, the prefetcher,
observes memory activity at runtime and predicts ad-
dresses that are likely to be accessed next. Prefetching is a

completely transparent mechanism from the application’s
point of view. The prefetcher’s prediction mechanisms are
often undocumented [42]. While most prefetchers only
take memory addresses into account to generate predic-
tions, more powerful data memory-dependent prefetch-
ers (DMPs) also consider the data stored at those ad-
dresses [8], [40]. To make useful predictions, most pre-
fetchers keep an internal state that reflects recent memory
activity. They are often implemented as a shared resource
between processes running on the same physical processor
core. This makes prefetchers susceptible to side-channel
vulnerabilities, as we discuss in detail in Section 4.

2.2. Simultaneous Multithreading (SMT)

Traditionally, every processor core executes exactly
one program thread at a time. On a system that supports
multithreading, multiple threads take turns in using the
core. To switch from one thread to another, the state of
the current thread needs to be stored in memory, and
the state of the next thread needs to be restored to the
processor registers. This procedure is known as context
switching and handled by the scheduler, a component of
the operating system [47].

Simultaneous Multithreading (SMT) [48] is a concept
that aims to better utilize the resources of a processor
core. It schedules multiple threads on a single processor
core at the same time, based on the insight that a single
thread often cannot utilize all the processing units avail-
able in a core. SMT has been adopted by major processor
vendors such as Intel (branded “HyperThreading”) [30]
and AMD [1]. Their implementations expose one physical
processor core as multiple independent logical cores to the
operating system. We refer to logical cores that are backed
by the same physical core as sibling cores. The operating
system schedules threads on logical cores in the same way
as it would on a physical cores [30].

On a non-SMT system, a thread has exclusive access
to the resources of a processor core while it is scheduled.
In contrast, on an SMT system, instructions from parallel
threads that are scheduled on sibling cores are processed
concurrently and share processor resources, potentially
also the prefetcher. We emphasize that, as a result of SMT,
instructions issued by multiple processes can run on the
same physical core without requiring a context switch.

2.3. Prior Work on Mitigations

Mitigations proposed in prior work can be divided
into two classes: software-based and hardware-based. All
mitigation approaches either try to prevent the leakage in
the first place, suppress potential leakage when crossing
privilege boundaries, block building blocks of specific
attacks, or detect attacks heuristically. We discuss miti-
gations from prior work in detail in Section 8 and relate
them to our approach.

3. Defending Against Prefetching Attacks

3.1. System and Attacker Model

We assume a system with a processor that performs
hardware prefetching. We further assume that the defender
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and attacker know the type of the deployed prefetcher as
well as its security-relevant characteristics (e.g., obtained
by the attacker with a copy of the target hardware and a
suitable testbench [42]). The defender is able to modify
the software running on the CPU, including the operating
system kernel. The hardware provides an interface to
control (i.e., enable or disable) the prefetcher from the
kernel. The attacker is able to execute arbitrary code in
user space. In Section 7.3, we extend the attacker model
to attackers at higher privilege levels.

3.2. Research Questions and Challenges

In this work, we answer the following research ques-

tions:

e RQ1: What kind of side-channel vulnerabilities in
prefetchers have been exploited in prior work? Is
there a core set of vulnerabilities that are critical for
all known attacks?

e RQ2: Is there a software-only countermeasure to
mitigate all known prefetching-based side-channel
vulnerabilities effectively and efficiently?

Challenges. To answer these research questions, we
need to overcome the following challenges:

1) Prefetcher side channels have been exploited in dif-
ferent settings in prior work. We need to work out
similarities and differences between those approaches
to be able to identify common patterns.

2) Countermeasures require trustworthy arguments on
why they can be expected to prevent current and
future attacks. So far, mitigations have been discussed
briefly and in the context of specific attacks as part
of offensive papers, but never considering the class
of prefetching-based side channels as a whole.

3) Any countermeasure will cause a performance im-
pact, which needs to be quantified and minimized.

Proposed Approach. To overcome these challenges,

we pursue the following approach. First, we systematize
known prefetching-based side-channel attacks and the vul-
nerabilities they exploit. We identify a minimal set of
vulnerabilities that are required for any attack to work.
Based on that, we design and implement a solution to
prevent exploitation of this minimal set of vulnerabilities,
leading to a countermeasure effective against all prefetcher
side-channel attacks from user space. We then evaluate the
implemented solution on real-world hardware.

4. Systematization of Attacks

To protect against prefetching-based side channels, we
first need to understand the attack vectors in detail. To this
end, we systematize all attacks exploiting hardware-based
data prefetchers that we could find in academic literature
(13 attacks across 7 papers). Inspired by prior works on
mitigating other microarchitectural side channels [6], [32],
[43], we break down prefetching-based attacks into stages
(Section 4.1). We further define the scopes in which those
attacks operate (Section 4.2). Finally, we visualize our
systematization by plotting the attack sequences, deduce
similarities and differences, and expose where software-
based mitigations can effectively be applied (Section 4.3).
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Figure 1. Stages of prefetching-based side channels

4.1. Stages of Prefetching Side Channels

We observe that prefetching side channels can be split
into the following five stages, as illustrated in Figure 1:

o S1: (Offline) Preparation. For some attacks, an at-
tacker has to take preliminary steps before the actual
attack begins, such as reverse engineering or setting
up data structures.

o S2: Cache Reset. To start from a clean state, some
attacks include actions to reset the initial cache state.

o S3: Prefetcher Training. Most prefetchers keep

an internal state that governs their behavior. The
prefetcher continuously observes memory activity to
identify patterns in the addresses or data being ac-
cessed. When a new pattern is detected or existing
patterns are altered or interrupted, the prefetcher’s
internal state changes. Thus, the prefetcher’s future
behavior changes as well. We refer to this state
change as prefetcher training. From the attacker’s
perspective, this step can be seen as encoding in-
formation into the prefetcher’s state. In the context
of an attack, this information is secret-dependent.
S4: Prefetch Trigger. Upon a trigger event, such as
another memory access that matches certain criteria,
a prefetcher may bring additional memory lines into
the cache. Those memory lines are selected based on
the prefetcher’s internal state. We refer to this process
as prefetch trigger. From the attacker’s perspective,
this step can be seen as extracting information from
the prefetcher’s state into the cache.

« S5: Extraction. The cache state is inspected to ex-
tract information about the prefetcher’s internal state.
This step can be seen as extracting information from
the cache into the attacker’s context.

Attacks may skip some of these stages, as we show in
Section 4.3.

4.2. Scopes

Prefetch attacks often operate across privilege do-
mains. In this respect, we classify attacks based on the
following scopes:

« SP: Same-process. Leaking within the same process.

o CT: Cross-thread. Leaking from one thread of a

user-space process to another.

e CP: Cross-process. Leaking from one user-space

process to another.
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Figure 2. Overview of the sequence of activities in prefetching-based attacks. Core activities required by all are highlighted in red.

o KU: Kernel to user. Leaking from kernel to user
space.

o TO: TEE to OS. Leaking from a trusted execution
environment (TEE), such as Intel SGX or ARM
TrustZone, to the (untrusted) operating system.

If victim and attacker operate in different contexts
(e.g., in different user-space processes), the attacker has to
ensure that the prefetcher keeps its state across the context
switch. Especially when leaking between two user-space
threads or processes, the attacker faces the problem that
the scheduler manages the process runtime, making it non-
trivial to interrupt the victim process at a specific point
in time (when the prefetcher’s state is secret-dependent)
and schedule the attacker process (to extract the state).
Some attacks assume shared memory, either data memory
or shared libraries, between both processes to address
this issue [10]; others use additional side channels for
synchronization [42].

4.3. Prefetching Attack Systematization

We now systematize 13 attacks from prior work to an-
swer RQ1. We list these attacks in Table 1 and denote the
prefetcher types they exploit, the scope the attacks operate
in, and the attack targets. In addition, we map all attack
procedures to the five stages introduced above (details
in Appendix A). We summarize our results in Figure 2,
which shows the sequence of activities per attack. If an
attack does not perform any of the alternative activities at
some point in the sequence, we record a transition through
a no-operation (NOP) block. We highlight four findings:

Finding: There Are Mandatory Stages. Our sys-
tematization shows that prefetcher training (1), prefetcher
triggering (2), and cache extraction (3) (highlighted in red
in Figure 2) are activities that are common to all attacks,
as there are no NOP alternatives.

Finding: Prefetch Attacks Are Cache Attacks. We
further note that all prefetching-based side channels are
cache-based attacks: All attacks are built upon techniques
to probe the cache state of certain cache lines (), typically
akin to Flush+Reload [52] and Prime+Probe [33].

Finding: Prefetching Is Triggered by Victim or
Attacker. We find that many attacks rely on the victim
context to trigger the prefetcher to extract information
from the prefetcher’s state and transfer it into the cache ().
However, recent works have shown that this step can
be moved into the attacker’s context in some cases,
even though this involves more complex synchronization
steps [9], [10], [42].

TABLE 1. PREFETCHING-BASED ATTACKS IN PRIOR WORK.
PREFETCHERS MARKED WITH 'l' ARE DMPS, ALL OTHERS ARE
ADDRESS-BASED. SCOPES ARE EXPLAINED IN SECTION 4.2.

Attack Prefetcher Scope Target
Shin et al. [44] Intel IP stride CP OpenSSL ECDH
Augury [40] OOB Apple DMP!  SP Custom
Augury [40] SLH Apple DMPT  SP Custom
Augury [40] Addr. Apple DMPt  SP —
AfterImage [10] Var. 1 Intel IP stride CT/CP Custom
AfterImage [10] Var. 2 Intel IP stride KU Custom
AfterImage [10] SGX Intel IP stride TO Custom
AfterImage [10] RSA  Intel IP stride CT MbedTLS RSA
Afterlmage [10] Sync  Intel IP stride CP OpenSSL RSA
Xiao et al. [51] Intel IP stride SP AES
FetchBench [42] AES ARM SMS CP MbedTLS AES
. MbedTLS RSA,
PrefetchX [9] Intel XPT CP GnuPG RSA
Go RSA,
GoFetch [8] Apple DMPT  CP OpenSSL DHKE,
CRYSTALS

Finding: The Victim Trains The Prefetcher. Most
importantly, we emphasize that all attacks rely on
prefetcher training within the victim context (1). This is
plausible, as the victim necessarily needs to work with the
secret (e.g., perform secret-dependent memory accesses)
to encode it into the prefetcher’s state. Notably, from a
defender’s perspective, this means that the victim is able
to protect itself using mitigations applied to its own code.

We conclude that a general mitigation approach
against prefetching-based side-channel attacks is to ensure
that no training occurs in the victim context. Fortunately,
code running in victim contexts is easier to control than
attacker code, which is (as the name suggests) constituted
by the attacker.

S. PREFENCE: Design and Implementation

We now answer RQ2 by presenting PREFENCE, our
software-only countermeasure against prefetching-based
side-channel attacks. It is based on the insight that the
prefetcher is trained by the victim process in all attacks.
We discuss alternative software-based defense approaches
and why we consider them infeasible in Section 8.1.

5.1. Design Considerations

Design Goals. We want our countermeasure to fulfill
the following design goals:



o DG1: It mitigates all prior prefetching-based attacks

conducted from user space.

o DG2: It is simple to use for application developers

and end users.

e DG3: It has minimal runtime overhead.

o DG4: It is functional when the prefetcher is shared

across physical or SMT sibling cores.

Idea: Disabling the Prefetcher Temporarily. As we
have shown in Section 4.3, stage S3 is a critical phase
in all attacks. In this stage, the victim process encodes
secrets into the prefetcher’s state. This is where our coun-
termeasure intervenes: Our idea is to allow user-space
applications to disable the prefetcher temporarily in a
fine-grained manner, for example while security-critical
code is executed. We exploit (and verify in Section 6.2)
that the prefetcher does not update its state while it is
disabled, i.e., it cannot be trained in this state. In this
way we fulfill DGI, since we avoid secrets being encoded
into the prefetcher’s state. At the same time, we limit the
performance impact of the prefetcher being disabled to
the security-critical code only, thus enabling DG3.

Naive Design: Giving User-Space Applications Di-
rect Control. The following naive defense idea sounds
straightforward at first: We could directly expose the
processor’s model-specific registers (MSRs) for prefetch
control to user-space applications, giving them full con-
trol over the prefetcher’s activation state. However, upon
closer inspection, we identify four problems.

Problems With the Naive Design. First, we note that
exposing the relevant MSRs directly to user-space appli-
cations requires application developers to write processor-
specific code, since MSRs are not standardized (see Sec-
tion 7.4). This violates DG2.

Second, we identify two issues that may occur when
a security-critical process (which disabled the prefetcher)
is descheduled and a non-critical process is scheduled
instead: (i) the interrupting process cannot benefit from the
prefetcher’s performance improvements, violating DG3,
and (ii) the interrupting process could maliciously re-
enable the prefetcher, potentially violating DG1. Because
scheduling events are transparent to applications, applica-
tions cannot easily address these issues. Thus, our solution
needs to ensure that the prefetcher is re-enabled while
other non-critical processes are running and disabled again
when the security-critical process is re-scheduled.

Third, we identify a problem with prefetchers that are
shared across physical or SMT sibling cores. A co-located
malicious process with full control over the prefetcher
could re-enable the prefetcher while the security-critical
process is running, violating DG4. Consequently, we need
to ensure that a prefetcher cannot be enabled if any of the
co-located processes sharing that prefetcher requested it
to be disabled.

Fourth, we note that a security-critical process may
be migrated from one processor core to another. If the
prefetcher operates on a per-core basis, it needs to be re-
enabled on the original core and disabled on the destina-
tion core to fulfill DG1 and DGS3.

The above problems clearly show that we have to
dismiss the naive design: We cannot provide user-space
applications with direct access to the prefetcher’s activa-
tion state. In the next section, we propose PREFENCE, our
improved mitigation design that addresses these problems.

5.2. PREFENCE Design

Solution: Scheduling-Aware Prefetch Control. Our
proposed design, PREFENCE, addresses the problems with
the naive design. It provides user-space applications with
reliable deactivation of the prefetcher, regardless of the
state of parallel processes and scheduling. We achieve
this by tightly integrating our solution with the operating
system kernel and the scheduler. The kernel can provide a
unified interface to the user-space applications, abstracting
away any processor-specific implementation details, thus
enabling DG2. In addition, by integrating our defense into
the scheduler, we can better address DG1, DG3 and DG4
and has to ensure that the prefetcher is disabled exactly
as long as required, regardless of intermittent scheduling
events.

Final Design. PREFENCE empowers user-space code
to protect itself from prefetching-based side channel at-
tacks by requesting the prefetcher to be disabled tem-
porarily. More precisely, a process signals to the oper-
ating system kernel when it enters or leaves a security-
critical code section, such as an encryption function. This
signaling requires only minimal code changes and can
be integrated at various levels, from very fine-grained to
more coarse-grained. If it is integrated at library level (a
fine-grained way of applying PREFENCE), all programs
that use the respective library benefit from it automat-
ically. Alternatively, PREFENCE can also be integrated
at application level, either to protect application-specific
security-critical code or to wrap calls to security-critical
legacy libraries that do not yet use PREFENCE themselves.
Finally, PREFENCE also allows the user to decide that
prefetching should be disabled for an entire process (the
most coarse-grained way of applying PREFENCE). The
implementation effort for library and application devel-
opers is low compared to complex re-writes required by
other countermeasures (such as constant-time program-
ming, see Section 8.1). In this way, PREFENCE achieves
DG2.

Handling Scheduling. The kernel has to keep track
of whether a process is currently in a security-critical
code section and ensure that the prefetcher is disabled
during this period—even if the process is interrupted by
the scheduler. Once the prefetcher has been disabled, it
remains disabled until the requesting process no longer
executes security-relevant code, or until a different pro-
cess not running security-relevant code is scheduled. If
the next-to-be-scheduled process also requested to have
the prefetcher disabled, the prefetcher remains disabled
until non-critical code is reached. This is enforced by
the scheduler, which changes the prefetcher’s activation
state based on the security state of the next process to be
executed.

The Simple Case: Per-Core Prefetcher, No SMT. We
use the example in Figure 3 to illustrate our countermea-
sure, starting with the simple case in the upper half (a): a
prefetcher that is exclusive to one core on a CPU without
SMT. When a process is started, prefetching is enabled by
default. As process P1 shows, the process can then request
prefetching to be disabled, perform a security-critical op-
eration, and request prefetching to be re-enabled. Process
P2 illustrates the case where a process is interrupted by
the scheduler during a security-critical code section. The



scheduler deschedules P2 and checks whether the next
process requested prefetching to be disabled or not. In
this example, the next processes (the new process P3)
did not request prefetching to be disabled. Consequently,
the scheduler re-enables prefetching while P3 is running.
Once P3 is finished, the scheduler disables the prefetcher
again and switches back to P2.

The Special Case: Shared Prefetcher or SMT. If the
processor uses SMT and sibling cores share the same
prefetcher, we need to pay attention to implicit context
switches in order to fulfill DG4. With SMT, multiple
processes can be executed on the same physical processor
core simultaneously without operating-system-controlled
context switches between them. In the worst case, when
an attacker and a victim process are scheduled on sib-
ling cores, the victim could request the prefetcher to be
disabled, while the attacker requests it to be re-enabled.
Similarly, if the prefetcher’s state is shared across cores, an
attack could be run simultaneously from a different core.
For this reason, it is insufficient to update the prefetcher’s
activation state on OS-controlled context switches in these
cases. Instead, we keep prefetching disabled on all (logi-
cal) cores that share a prefetcher as soon as and as long
as any of the scheduled processes requests it.

We provide an example in Figure 3 (b). First, process
P1 requests prefetching to be disabled while the parallel
process P4 does not request it. To protect process P1,
prefetching is disabled until P1 leaves the security-critical
code section. Next, process PS5 enters a security-critical
section but is soon interrupted by the scheduler. Since
no more processes request the prefetcher to be disabled
after P5 is descheduled, the prefetcher is re-enabled. Next,
processes P2 and P6 both run security-critical code in
parallel. The prefetcher is disabled when the first process
(P2) enters the security-critical section and is re-enabled
when the last process (P6) leaves it. Finally, P5 is re-
scheduled. As it was interrupted in a security-critical
section, the prefetcher is disabled at context switch and
re-enabled once the security-critical section is completed.

Core Migrations. We note that our methodology also
handles the case of a core migration. On a context switch,
the scheduler adjusts the prefetcher’s activation state based
on the request of the next process. When a core migration
occurs, the prefetcher’s activation state on the original core
is determined by the next process running on that core. On
the target core, the migrating process is the next process,
so it determines the prefetcher’s activation state.

5.3. PREFENCE Implementation

Kernel Patch. We implement our countermeasure as a
Linux kernel patch. Our prototype is currently able to con-
trol the prefetchers of Intel x86_64 (tested on Comet Lake)
and ARM Cortex-A72 CPUs. Excluding comments, our
patch adds only 91 (Intel) / 62 (ARM) lines of code to the
Linux kernel code base. We extend the task_struct,
the place where the scheduler keeps all information related
to a process, with a boolean prefetch_disable flag. The flag
is initialized to false for new processes, i.e., prefetching
is enabled by default and can be disabled on request.

To allow processes to control this flag from user space,
we add options to set, clear or query the flag to the
prctl system call. When the flag is changed through
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Figure 3. PREFENCE at work: The prefetcher is disabled temporarily
while security-critical code runs. On SMT-capable cores and for shared
prefetchers, the scheduler considers requested activation states of the
relevant parallel processes.

the system call, the kernel updates the task_struct
of the calling process accordingly. In addition, the kernel
changes the prefetcher’s activation state on the respective
CPU immediately by writing to the corresponding MSRs
(bits 1-4 in MSR 0x1A4 on our Intel CPU [21], bits
21, 32, 42, 56 in MSR CPUACTLR_EL1 on the ARM
A72 [3]) before returning to user space. These MSRs
can only be modified from kernel space. We provide
an overview of prefetch-related MSR flags for various
microarchitectures in Section 7.4. We further extend the
scheduler’s context_switch function to update the
activation state of the prefetcher on context switches based
on the prefetch_disable flag of the next process.

To deal with prefetchers shared across physical or
SMT sibling cores, we keep a global bit vector that
indicates for each CPU whether it currently runs a process
with the prefetch_disable flag set. We check this bit vector
before enabling the prefetcher on any core. Only if none
of the cores sharing the same prefetcher currently runs a
process with the prefetch_disable flag set, the prefetcher
can be enabled; otherwise, it remains disabled.

Using PREFENCE in Applications. To make use
of PREFENCE, the prefetch_disable flag needs to be set
before entering security-critical code sections and cleared
afterward through system calls. These system calls can
be issued in a fine-grained manner in library code or
application code. PREFENCE can even be made available
to users who want to protect legacy software: Users can
invoke a wrapper program similar to taskset that just
sets the prefetch_disable flag and executes the target appli-
cation, which then inherits the flag. This effectively sets
the prefetch_disable flag in a more coarse-grained way,
affecting the entire codebase of the target application.

6. Evaluation

In this section, we evaluate PREFENCE for efficacy
and efficiency, based on our implementation. First, as
a prerequisite, we evaluate the behavior of a disabled
prefetcher to verify that disabling the prefetcher has the
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expected effects (especially, no further training), and thus
PREFENCE is applicable. Next, we demonstrate the effi-
cacy of our countermeasure: It prevents the prefetching-
based side channel presented by Shin et al. [44] as well
as the end-to-end attack proposed by Schliiter et al. [42]
(both reproduced by us). Finally, we show that PREFENCE
is also efficient. We investigate three scenarios:

e Scenario 1: Stock Kkernel. For an unmodified
(“stock”) kernel, we measure the performance im-
pact when the prefetcher is disabled for the whole
execution time of an application (using SPEC bench-
marks). These measurements represent the currently
most viable general countermeasure and serve as a
baseline for the following experiments.

o Scenario 2: Patched kernel with non-critical work-
load. For a patched kernel, we measure the per-
formance impact (on SPEC benchmarks) when no
process requests prefetching to be disabled. These
measurements show the fixed performance overhead
on a process introduced by our countermeasure.

e Scenario 3: Patched kernel with critical work-
load. As an end-to-end example, we evaluate the
performance of a web server application running on a
patched kernel. Using our system call, we disable the
prefetcher during execution of TLS-related code. In
addition to cryptographic code, each HTTP request
to our server also triggers application code that can
still benefit from the prefetcher (e.g., a file upload).

To investigate the overhead further, we specifically evalu-
ate the introduced fixed overhead on every context switch
and the one-off overhead of a system call whenever a
prefetch_disable flag is modified in isolation. We report
these additional results in Appendix B.

6.1. Evaluation Environments

For all experiments in the main body of this paper, we
use the following two platforms throughout the evaluation.

x86_64. Our x86_64 platform is an Intel Core i7-
10510U (Comet Lake) CPU running Alpine Linux 3.19
with kernel 6.6.14-r0-1ts. Depending on the exper-
iment, we either use the original kernel from the Alpine
repositories or our patched kernel derived from it. We use
the rdt scp instruction to measure time.

ARM. Our ARM platform is a Raspberry Pi 4 using
a Broadcom BCM2711 SoC with four Cortex-A72 cores.
It runs Raspberry Pi OS 12 64-bit with Linux kernel
6.6.22-v8. We either use a kernel that we compiled
from the official sources [37] without any changes or a
kernel derived from it using our kernel patch. We use the
cycle count register (PMCCNTR_ELO) to measure time.

6.2. Prerequisite: Disabled Prefetcher Behavior

PREFENCE requires that a disabled prefetcher cannot
be trained, i.e., it does not update its state while it is
disabled.

Experiment. To test the prefetcher for this behavior,
we implement a corresponding testcase for stride prefetch-
ers, the most common type of prefetchers, in the Fetch-
Bench framework [42]. We first disable the prefetcher,
access a sequence of memory locations with constant
distance between them, re-enable the prefetcher, and per-
form one more memory access matching the pattern. If
the prefetcher keeps learning while disabled, we expect
it to be triggered by that last access and bring more
elements into the cache. Otherwise, no prefetching effects
should appear in cache. As a baseline, we repeat the same
experiment with the prefetcher being enabled. In that case,
we expect prefetching effects in the cache.

Results. We run the testcase on the Intel Core i7-
10510U and BCM2711 processors. As illustrated in Fig-
ure 4, we find that the prefetchers cannot be trained while
disabled. We conclude that PREFENCE can be used with
these prefetcher implementations.

6.3. Efficacy: Protecting OpenSSL

In this experiment, we evaluate the efficacy of our
countermeasure using the attack by Shin et al. [44] on
the ECDH implementation in OpenSSL 1.1.0g as an ex-
ample. Instead of re-implementing the end-to-end attack,
we focus on reproducing the underlying prefetching side
channel in both evaluation environments and show that
PREFENCE prevents the leakage successfully.

Vulnerability. The leakage is caused by memory ac-
cesses to a lookup table when a point on an elliptic curve
is squared. If those accesses (by chance) form a regular
pattern, the prefetcher is activated and fetches memory
lines before and/or after the lookup table. This prefetcher
activity leaves traces in the cache state of shared memory,
leaking relations between different portions of the point on
the curve. Depending on the context where this operation
is used, the point may be secret information.

Experiment. We identify the OpenSSL library func-
tion BN_GF2m_mod_sqr_arr as the function that op-
erates on the lookup table. Our test program calls this
function with a value that produces a regular access pat-
tern and thus triggers the prefetcher (if enabled). It then
accesses the potentially prefetched location, in our case
the first cache line after the lookup table, and measures
the memory latency to determine its cache state.

We repeat the experiment in two configurations. In
the first configuration, we call the function without any
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countermeasure against prefetching-based side channels
enabled. This experiment serves as a baseline and shows
that the library function actually leaks information when
called with certain inputs. In the second configuration,
we set the prefetch_disable flag before calling the library
function and clear it after returning from the library
function. If PREFENCE is effective, we expect no more
prefetching leakage.

Results. We run both configurations in both evaluation
environments and present the results in Figure 5. We
repeat each configuration 1,000,000 times on the Intel
CPU and 10,000,000 times on the ARM CPU. When
the prefetch_disable flag is cleared on the Intel CPU, we
observe a significantly lower latency when loading from
the memory line right after the lookup table (median:
96 units). This indicates that the prefetcher loaded this
memory line into the cache (i.e., unwanted leakage). In
contrast, when PREFENCE is activated on the Intel CPU
by setting the prefetch_disable flag, the observed memory
latency is above typical values for cache hits (median: 340
units), indicating a cache miss and absence of leakage.
On the ARM CPU, we observe a weaker leakage signal
(possibly indicating that the prior-work attack would not
perform as well there). Without a countermeasure, the
prefetching leakage appears at around 250 cycles. When
we set the prefetch_disable flag before calling the target
function, we observe that the leakage disappears reliably.
We conclude that PREFENCE successfully prevents the
prefetching-based side channel on both CPUs.

Execution Time Evaluation. For completeness, we
also evaluate the temporal overhead of the prefetcher
being temporarily disabled while the vulnerable library
function is executed. We use the same experimental setup
as before, but we additionally measure the execution
time of the BN_GF2m_mod_sqgr_arr function with and
without the prefetch_disable flag set.

On the ARM CPU, we measure a slowdown of 2.6%
when the prefetcher is disabled (the median execution time
increases from 550 to 564 cycles). On the Intel CPU, we
find that the median execution time even decreases slightly
when prefetching is disabled (from 374 to 368 units, a

speedup of 1.8%), which we attribute to the prefetcher
interfering with non-ideal predictions when it is enabled.

However, these measurements only reflect the per-
formance of PREFENCE in an artificial individual case.
Thus, we conduct an in-depth efficiency evaluation based
on more complex and realistic workloads in Sections 6.5
and 6.6.

6.4. Efficacy: Protecting MbedTLS

Next, we show that PREFENCE successfully prevents
an end-to-end attack from prior work, namely the attack
on MbedTLS AES from the FetchBench paper [42]. As
this attack exploits ARM’s Spatial Memory Streaming
(SMS) prefetcher, we can only reproduce it on our ARM-
based platform.

Vulnerability. The SMS prefetcher divides memory
into fixed-size regions of 1 KiB each. When a load in-
struction accesses multiple cache lines within the same
region (e.g., in a loop), the prefetcher records this access
pattern in its internal state. As the vulnerable AES-128
implementation issues key-dependent accesses to lookup
tables (which span multiple such regions) during en-
cryption, key-dependent information is encoded into the
prefetcher’s state. An attacker can extract this state and
recover up to half of the secret key bits (i.e., 64 bits) using
a properly aligned (aliasing) load instruction in their own
code running on the same CPU core.

Experiment. We run two experiments: First, as a
baseline, we run the end-to-end attack on our patched
kernel, but without making any PREFENCE system calls
in the victim code. This configuration is expected to show
leakage. We record how many secret bits can be recov-
ered successfully. Second, we repeat the attack, but with
PREFENCE applied. We set the prefetch_disable flag in the
victim code before calling the AES encryption function
and clear it afterward. Again, we record the leakage.

Implementation. We build upon the proof-of-concept
code published by Schliiter et al. [41]. Due to the complex
and unreliable synchronization between the attacker and
victim processes, the original attack has a low success
rate. This is not ideal for our experiment, because a failed
attack (due to failed synchronization) is hard to distinguish
from a prevented attack. Thus, we strengthen the attack
to increase its success rate. We eliminate the need for
synchronization through side channels by merging victim
and attacker code into a single process and returning
from the vulnerable library function right after the secret-
dependent accesses have occurred. We further replace the
cache inspection mechanism: Instead of Flush+Flush [14],
we use the privileged RAMINDEX interface [3]. We
emphasize that these changes only strengthen the attacker,
not the victim. We will now show that PREFENCE can
protect even against this stronger attacker.

Results. We repeat both experiments 200 times each
and generate a fresh random key for every run. One execu-
tion of the end-to-end attack takes approx. 24.2 minutes on
average. Figure 6 illustrates our results. Without protection
through PREFENCE (green), we are able to leak 58.8
out of 64 recoverable key bits successfully on average.
We leak all recoverable key bits in 35% of the attacks.
With PREFENCE applied (purple), we observe a success
rate that is essentially equivalent to random guessing,
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Figure 6. Results of the reproduction of the attack from prior work
on MbedTLS AES [42] with 200 repetitions per configuration. The
histogram shows how many key bits the attacker is able to extract
correctly. When PREFENCE is not applied (green), all 64 key bits can
be extracted in 35% of the cases. When PREFENCE is applied (purple),
the attack is mitigated and the attacker’s success rate drops to the level
of random guessing.

with an average success rate of 31.8 correct key bits per
attack. The red line indicates the expected distribution for
random guessing, more precisely, a binomial distribution
with n = 64 independent guesses, where each bit guess
is correct with a probability of p = 0.5. This expected
distribution closely matches the observed distribution with
PREFENCE applied. We conclude that PREFENCE suc-
cessfully mitigates this attack.

Execution Time Evaluation. Finally, we also measure
the temporal overhead on the vulnerable library func-
tion caused by the lack of prefetching. To this end, we
call the function 10,000,000 times with and without the
prefetch_disable flag set and measure its execution time.
We find that the median execution time increases by
approx. 2.7% when prefetching is temporarily disabled
(from 903 to 927 cycles).

6.5. Efficiency: Non-Critical Workloads (Scenar-
ios 1 and 2)

We now investigate the efficiency of PREFENCE for
more complex workloads, starting with the performance
impact on workloads that are not security-critical.

Experiment. We run SPEC CPU 2017 bench-
marks [46] on three different system configurations. As
baselines, we measure the performance of the SPEC
workloads on a stock kernel while prefetching is either
enabled or disabled permanently (scenario 1). These mea-
surements show us how much different workloads benefit
from prefetching at all and how expensive the radical-but-
simple defense of disabling the prefetcher permanently
would be. Afterward, we measure the performance of
the same workloads on a patched kernel with prefetching
enabled and without setting the prefetch_disable flag (sce-
nario 2). This allows us to rate the performance impact on
non-security-critical workloads caused by the added code
that is executed on every context switch.

Benchmark Parameters. We run the SPEC CPU
2017 Integer Rate set of benchmarks and report the execu-
tion time of the individual benchmarks as a metric for their
performance. We run each benchmark three times (the
maximum number of iterations in a “reportable run” [45]).

Results. Figure 7 shows the benchmark results in both
evaluation environments. The bars represent the median
runtime of the individual benchmarks across the three
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Figure 7. SPEC CPU 2017 benchmark results. Disabling the prefetcher
permanently causes significant performance overhead in benchmarks 502
to 523. The performance overhead introduced by our patched kernel is
negligible for non-security-critical workloads.

iterations, while the black error bars indicate the runtime
of the other two iterations.

Comparing the two stock kernel configurations (or-
ange and blue bars), we find that the prefetcher especially
speeds up the benchmarks 502-523. At a maximum, the
prefetcher improves performance by 43% (benchmark 505
on the Intel CPU) and 37% (benchmark 502 on the
Raspberry Pi), respectively. In most other workloads, both
configurations performed similarly. In one exceptional
case, we see a slowdown by 5% caused by the prefetcher
(557 on the Raspberry Pi). Nevertheless, we conclude
that disabling the prefetcher permanently can lead to a
significant performance drop on both tested systems.

When we compare the stock kernel and the patched
kernel, both with prefetching enabled (blue and green
bars), we observe only small differences in execution time.
For most benchmarks, the absolute difference is around
1%. We conclude that our kernel patch has negligible
impact on non-critical workloads.

6.6. Efficiency: Security-Critical Workloads (Sce-
nario 3)

Next, we evaluate the performance impact of
PREFENCE on a security-critical workload that uses our
protection mechanism.

Experiment. To evaluate the efficiency of PREFENCE
in a realistic end-to-end scenario, we now apply it to real-
world software. We use the web server lighttpd 1.4.75 [25]
(released in March 2024) as an example. Lighttpd ships
with plugins for various cryptographic libraries that can
act as backends to provide HTTPS support. In the fol-
lowing experiments, we use the OpenSSL plugin for this
purpose. Our goal is to protect the key material processed
by OpenSSL from prefetch-related side-channel leakage.
We compare two approaches of applying PREFENCE to
the web server: fine-grained (at plugin level) and coarse-
grained (at application level).

Fine-Grained PREFENCE. In this approach, we apply
PREFENCE in a more fine-grained manner, i.e., at plugin
level. We modify lighttpd’s OpenSSL plugin such that



the prefetch_disable flag is set whenever the control flow
enters any function in the plugin code (which then calls
OpenSSL) and cleared before the control flow returns
from the plugin code. This approach allows the majority of
the web server code base and the hosted web application to
benefit from prefetching but causes frequent system calls
to enable or disable the prefetcher.

Coarse-Grained PREFENCE. In this approach, we
apply PREFENCE in a more coarse-grained way, i.e.,
at application level. We use a wrapper program to set
the prefetch_disable flag immediately when lighttpd is
started. In other words, the prefetcher is disabled for the
whole lighttpd application, including all critical and non-
critical server code and any hosted web application that is
executed in child processes of the web server. This means
that the server application cannot benefit from prefetching
at all, but fewer system calls are required.

Web Application. In this case study, we use lighttpd
to host a web application that we expect to benefit from
prefetching in a scalable way. Our example application
is written in PHP and attached to lighttpd via CGI. It
implements a simple file sharing service that allows the
user to upload a file that is then stored on the server.
During the HTTPS-encrypted upload, both the web server
and the web application will process the file contents
from beginning to end. We anticipate that these operations
benefit from prefetching, especially for larger files.

Benchmarking Approach. We configure lighttpd to
serve our web application via HTTPS over TLSv1.3 and
access it through a benchmarking script. The script com-
municates with the web server via the loopback interface
and uploads files of different sizes containing random data.
We use the duration of the POST request that performs the
upload as a performance measure. We repeat each experi-
ment (i.e., each file upload) 300 times. To evaluate the per-
formance of this setup when protected with PREFENCE,
we evaluate it in scenario 3, i.e., with a patched kernel and
prefetching temporarily disabled through our PREFENCE
system calls. For completeness and as a baseline to com-
pare with, we also include performance measurements of
the same setup in scenario 1 (stock kernel) and scenario
2 (patched kernel with prefetching permanently enabled).

Results. We present the results in Figure 8. The x-
axis indicates the size of the uploaded file. The y-axis
indicates the duration of the upload POST request, relative
to a baseline. This baseline is the median duration of
the request in scenario 1 (stock kernel) with prefetching
permanently disabled, normalized to 1, as shown by the
black line. We represent the distribution of measurement
values as boxplots. For a clearer presentation, we exclude
the top and bottom 2% of values from each boxplot in this
figure. The horizontal lines connect the boxplot’s medians.

Finding: Application Benefits From Prefetching. Our
first finding is that our example application generally
benefits from prefetching on both CPUs. With prefetch-
ing permanently enabled (i.e., without any protection;
blue/green lines), the upload performs 20.3% faster on
average on the Intel CPU and 10.7% faster on average on
our ARM processor compared to the baseline of disabling
prefetching permanently. Thus, disabling prefetching per-
manently would be a costly measure.

Finding: PREFENCE Always Faster Than Baseline.
All PREFENCE variants reduce this cost significantly;
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Figure 8. Lighttpd benchmark results, showing the performance benefit
of PREFENCE compared to prefetching being permanently disabled for
a security-critical workload (black). Prefetching generally speeds up
the process, and once a significant file size is reached, the relative
performance benefit is approximately constant. Any form of PREFENCE
performs better than disabling the prefetcher permanently. Fine-grained
use of PREFENCE (purple) improves performance by 15.8% (Intel) and
7.2% (ARM) over the baseline on average, approaching the performance
of prefetching being enabled permanently (blue/green).

they always perform better than the baseline (permanently
disabling prefetching).

Finding: Fine-Grained PREFENCE is Faster. We
observe that the fine-grained use of PREFENCE at plu-
gin level (purple) performs better than the more coarse-
grained use of PREFENCE at application level (orange)
in this experiment. The lower number of system calls
in the application-level scenario does not compensate for
the slowdown of the non-critical parts of the web server
and the web application. The better-performing variant,
PREFENCE at plugin level (purple), is not as fast as
the insecure default configuration (i.e., having prefetching
permanently enabled; blue/green), as the OpenSSL code
can no longer fully benefit from prefetching. However,
with fine-grained use of PREFENCE, we are able to re-
claim a performance improvement of 15.8% on average
over the baseline on the Intel CPU and 7.2% on the
ARM processor. For coarse-grained use of PREFENCE,
the average performance improvement is still 7.8% (Intel)
and 3.1% (ARM) over the baseline.

Finding: Negligible Performance Impact of Sched-
uler Patch. We observe again that the overhead of our
scheduler patch is negligible for non-critical code, as the
blue and green lines overlap in both plots. This confirms
our result from Section 6.5 that programs that do not use
PREFENCE do not suffer a noticeable performance drop.



6.7. Summary of Results

We have demonstrated that PREFENCE is applicable
to our Intel and ARM processors, as their prefetchers
cannot be trained while they are disabled (Section 6.2).
We also verified that PREFENCE is effective, as it elim-
inates leakage caused by the prefetcher in a known-
vulnerable library function on both architectures (Sec-
tion 6.3) and mitigates an end-to-end attack from prior
work successfully (Section 6.4). We further demonstrated
that PREFENCE is efficient: For workloads that are not
security-critical, such as SPEC benchmarks, we observed
a performance overhead of less than 1% for the majority
of the benchmarks (Section 6.5). For our example of a
security-critical workload, a lighttpd web server serving a
web application that benefits from prefetching via HTTPS,
we found that PREFENCE always performs better than
disabling the prefetcher permanently. More specifically,
when PREFENCE is applied in a fine-grained manner at the
level of the OpenSSL plugin, our example application runs
up to 15.8% (Intel) and 7.2% (ARM) faster on average
compared to the prefetcher being permanently disabled
(Section 6.6).

7. Discussion

Next, we discuss the applicability of PREFENCE to
different types of hardware prefetchers (Section 7.1) and
an approach to automate the insertion of its system
calls (7.2). In addition, we discuss the applicability of
PREFENCE to different scopes (7.3), different processors
and processor flags (7.4), and other types of prefetching
(7.5). Finally, we discuss PREFENCE in the context of
prefetching-based covert channels (7.6).

7.1. Applicability to Hardware Prefetcher Types

When PREFENCE is to be applied to real-world pro-
grams, the question arises which code sections should be
wrapped in PREFENCE system calls. Naturally, applying
PREFENCE to a whole process (coarse-grained) is an easy-
to-implement and trivially secure option. However, it is
not the most performant one. For more fine-grained use of
PREFENCE, the leaking code sections need to be identified
and wrapped in PREFENCE system calls. As we found in
Section 6.6, this additional effort at development time is
rewarded with better performance at runtime.

When PREFENCE is to be used in a more fine-grained
manner, the system call locations depend on the prefetcher
types that are expected to be present in the target system.
More precisely, we need to distinguish between systems
with only address-based prefetchers and systems also fea-
turing DMPs.

Address-Based Prefetchers. If only address-based
prefetchers are present, it is sufficient to apply PREFENCE
to code regions that operate on secret-dependent ad-
dresses. We envision that automated taint tracking can
facilitate this process, as we discuss in Section 7.2.

DMPs. To also protect against side channels intro-
duced by DMPs, PREFENCE system calls need to be
placed more conservatively to account for data-dependent
predictions as well. It is intuitive to place system calls

around code that operates on secret-dependent values di-
rectly. Otherwise, a DMP may activate and operate on the
secret-dependent values, potentially leaking them to an
attacker. In addition, however, we need to consider cases
where a DMP is triggered to operate on secret-dependent
values by a memory operation on non-secret values. We
consider two such scenarios: (i) adjacent buffers and (ii)
multiple levels of pointer indirection.

The first scenario illustrates the problem of adjacent
buffers: Consider a non-secret buffer and a secret buffer,
located consecutively in memory. When non-critical code
traverses the non-secret buffer, the DMP may be activated
and continue prefetching beyond the buffer’s bounds into
the secret buffer. The DMP may then interpret secret-
dependent data as a pointer, dereference it, and encode
secret-dependent information into the cache state. Thus,
memory operations on adjacent buffers should also be
wrapped in PREFENCE system calls. While this is a non-
trivial task to perform manually, we discuss how this step
could be automated in Section 7.2.

The second scenario occurs with DMP implementa-
tions that prefetch pointers multiple levels of indirection
deep. In this case, an attacker could craft a pointer into
security-critical memory and dereference it to trigger the
DMP. If the DMP then proceeds to dereference a secret
value as well, this action may leave traces in the cache.
In this scenario, any pointer dereference in the application
code could be exploited to trigger the prefetcher on a
security-critical buffer. Thus, PREFENCE should be ap-
plied to the whole security-critical process in this case.
However, to the best of our knowledge, no current DMP
implementation (neither Apple nor Intel) follows pointers
multiple layers of indirection deep.

7.2. Automating System Call Placement

Our approach depends on system calls being placed
before and after security-critical code sections. While the
manual effort required to apply PREFENCE to a whole
process (coarse-grained use) is low, placing system calls
at finer granularity is expected to cause higher effort.

To reduce the manual effort required for fine-grained
use of PREFENCE, we envision that prior research on
taint tracking can be leveraged to place system calls auto-
matically. For example, the approach of CryptoMPK [22]
could be adapted. CryptoMPK aims to automatically iden-
tify code that operates on buffers containing secret or
secret-dependent values. Such code is then surrounded
with instructions that switch memory protection keys
(MPKs). These additional instructions could also be our
PREFENCE system calls.

With CryptoMPK, developers annotate buffers that
contain initial secrets (e.g., keys), which are easier to iden-
tify than security-critical code. CryptoMPK then tracks
the use of those buffers. It identifies additional secret-
dependent buffers as well as all memory operations oper-
ating on secret or secret-dependent buffers.

To protect against leaks from address-based prefetch-
ers, CryptoMPK could place the PREFENCE system calls
before and after such memory operations. In addition,
CryptoMPK could be extended to facilitate fine-grained
system call placement for DMPs: To eliminate the prob-
lem of a DMP being triggered on adjacent buffers (as



discussed in Section 7.1), such adjacent buffers could
be treated as security-critical as well. Consequently, op-
erations on those buffers would also be protected with
PREFENCE system calls, preventing prefetcher activation.

7.3. Applicability to Different Scopes

Our current implementation of PREFENCE, as pre-
sented in Section 5.3, protects a user-space process from
attacks by other user-space processes (scopes SP, CT,
and CP, as introduced in Section 4.1). This covers 11
out of the 13 attacks that we discussed in Section 4.
The general principle of PREFENCE can also be used to
protect kernel code from user-space attacks (scope KU):
The kernel could disable the prefetcher temporarily during
security-critical operations. To prevent attacks from an
untrusted operating system on a trusted execution envi-
ronment (scope TO), the prefetcher could be disabled
temporarily while security-critical code is executed in
trusted execution. However, because the untrusted oper-
ating system can usually interrupt trusted execution [24],
[39], [49], the prefetcher’s activation state needs to be
saved when an interrupt causes a context switch to the
untrusted operating system and restored when switching
back. For Intel SGX, which is interrupt-unaware [31],
[49], this requires additional hardware support.

7.4. Applicability to Other Processors And Flags

Other Processors. In this paper, we implement and
evaluate PREFENCE for two specific CPUs. These CPUs
represent popular attack targets (such as the Intel IP stride
prefetcher [10], [44], [51]) and cover two popular archi-
tectures (x86_64 and ARMvS). However, prior work has
revealed that prefetcher implementations can differ widely,
even across processors of the same brand or architec-
ture [42]. We are confident that the design of PREFENCE
is general enough to be transferred to other processors as
well, as long as those fulfill two basic requirements. First,
the processor must expose a way to disable the relevant
prefetchers dynamically at runtime, e.g., by setting a bit
in an MSR. Second, the prefetcher must not update its
state while disabled.

To get an overview of how widespread processor
support for MSRs controlling the hardware prefetchers
is, we examined a large corpus of technical reference
manuals from Intel, AMD and ARM. We report our
detailed findings in Appendix C. Our results indicate
that most processors provide a way to control hardware
prefetchers, but the relevant MSRs are not unified, neither
across vendors nor for processors of the same vendor.
This strengthens our position that it is infeasible for user-
space applications to interact with the prefetcher directly;
instead, the operating system kernel should abstract from
implementation-dependent interfaces and provide a unified
and easy-to-use way for user-space applications to control
hardware prefetchers. The design of PREFENCE allows for
this architecture. The Intel XPT prefetcher is an example
for a prefetcher that cannot be controlled dynamically, as
Intel does not publicly disclose any way to control it [19].
In such cases, PREFENCE cannot be applied.

Other Flags. We emphasize that PREFENCE’s gen-
eral design is not limited to managing prefetching-related

flags. PREFENCE could be adapted to control other
microarchitectural components during the execution of
security-critical code as well. For instance, ARM and Intel
recently introduced the Data-Independent Timing (DIT)
flag [2], [5] and the Data Operand Independent Timing
Mode (DOITM) flag [18], respectively. The processors
concerned only guarantee data-independent timing behav-
ior for certain instructions when these flags are set. These
flags are meant to be set while cryptographic operations
implemented in constant-time code are executed. They
temporarily disable a range of optimizations that impact
timing behavior (including, but not limited to, certain
prefetchers [8], [18]). PREFENCE could be adapted to
dynamically set and clear these (or other) flags as well.

7.5. Applicability to Other Prefetching Types

We focus on mitigating vulnerabilities caused by hard-
ware prefetching on data in this paper. As prior work has
shown, prefetching on instructions can also be exploited
to leak information [55]. In principle, PREFENCE can
also be applied to this kind of prefetching, as long as
the prefetcher can be controlled. In fact, our implemen-
tations for both architectures also disable the instruction
prefetchers when the prefetch_disable flag is set. However,
when PREFENCE is applied in a very fine-grained manner,
i.e., only wrapping carefully selected code sections, the
selection of code sections may need to be reassessed with
instruction prefetching in mind to make PREFENCE fully
effective against instruction prefetching attacks. This is
because code sections vulnerable to attacks on instruction
prefetching might be different from those that are vulner-
able to data prefetching attacks.

Another kind of prefetching is software prefetching.
While software prefetching may also introduce vulnera-
bilities [13], [26], those vulnerabilities are not caused by
automated prediction mechanisms. Instead, they concern
explicit prefetching instructions. Thus, we consider soft-
ware prefetching vulnerabilities an orthogonal problem
that is out of the scope of this paper.

7.6. Covert Channels

In this paper, we focus on mitigating prefetching side
channels and exclude covert channels from the scope.
Prefetching-based covert channels have been proposed
in recent work. Cronin et al. [12] implement a covert
channel using the Intel IP stride prefetcher. They prime the
prefetcher from the receiver’s end, either evict or keep the
primed patterns from the sender process, and finally probe
for the existence of the primed patterns in the receiver
process. This probing either triggers the prefetcher or not,
indicating either a 0-bit or a 1-bit, respectively. Chen
et al. [10] exploit the same prefetcher but encode the
information to transmit into the stride. Rohan et al. [38]
exploit the Intel stream prefetcher. The sender triggers the
prefetcher on shared memory. The direction of prefetch
(forward or backward) is interpreted as a 1-bit value by
the receiver. Schliiter et al. [42] encode bit vectors into the
region-based ARM SMS prefetcher to transfer information
from trusted execution to the untrusted OS. Chen et al. [9]
implement two covert channels based on the Intel XPT
prefetcher. For the first channel, the receiver primes the



prefetcher’s state and the sender either idles or changes the
state by evicting one of the primed entries. For the second
channel, the sender either trains or resets the prefetcher
for a shared page.

All of these attacks have in common that it is the
attacker, not the victim, who controls the training stage.
In fact, there is no victim process at all in a typical
covert-channel setting: Covert channels are incapable of
leaking secret information on their own. Rather, they are
a means of exfiltrating secret information that the attacker
has obtained in another way beforehand. As these attacks
do not leak information out of a victim process directly,
a victim process has no incentive to defend against them.
Thus, PREFENCE is not applicable in this case.

8. Related Work

In this section, we provide an overview of software-
and hardware-based mitigations against prefetching-based
attacks that were proposed in prior work, and we relate
them to our approach.

8.1. Prior Work on Software-Based Mitigations

We start by discussing mitigations from prior work
that can be applied via (modified) software and argue that
none of them prevent attacks in an easy and efficient way.

Constant-Time Programming [10], [42], [44], [51].
One way to prevent most prefetching-based side chan-
nels, and also other cache-timing side channels, is the
programming technique of constant-time programming.
Despite the name, it not only refers to writing code that
executes in the same time regardless of the (potentially
secret) information processed, but it also mandates that no
secret-dependent control flow or memory access patterns
occur [17]. Avoiding secret-dependent memory access pat-
terns prevents address-based prefetchers from transferring
secrets into their internal state during training. Moreover,
avoiding secret-dependent branches prevents prefetching-
based attacks that infer the victim’s control flow based
on conditionally executed load instructions. However,
constant-time programming is ineffective against attacks
on DMP prefetchers that exploit secret-dependent values
instead of addresses or branches [8]. In addition, making
code constant-time requires complex re-writes and results
in significantly reduced performance [7], [35].

Clearing the Prefetcher’s State on Context
Switches [10], [12], [42]. Some prefetching-based at-
tacks train the prefetcher in a victim context, then switch
into the attacker’s context and trigger it there. Relevant
context switches are transitions between two user-space
processes, transitions between kernel and user space, and
returns from trusted execution. To mitigate such attacks,
the prefetcher’s state could be cleared on context switches.
This is straightforward to implement if the CPU provides
a suitable instruction, such as CPP RCTX on some ARM
CPUs [4], [5]. Otherwise, all stored patterns need to be
evicted, which is computationally expensive and requires
knowledge of implementation details such as the number
of patterns stored and the replacement policy.

We note that clearing the prefetcher’s state on con-
text switches is an incomplete countermeasure in three
cases. First, it is not applicable to attacks that trigger the

prefetcher in the victim process. Second, this countermea-
sure assumes that the prefetcher’s state is not shared across
physical or SMT sibling cores. Otherwise, the attack could
be executed from a different core before the context switch
resets the state. Third, in the case of trusted execution,
prior work has shown that an attacker is able to interrupt
trusted execution before it completes [24], [39], [49]. If
this is possible, clearing the prefetcher’s state only at the
end of a trusted execution procedure is insufficient.

Mitigating Cache-Timing Side Channels [10], [44].
We found in Section 4.3 that all prefetching attacks rely
on cache-timing side channels. To mitigate those, access
to timer interfaces can be restricted or their resolution can
be reduced. This mitigation has especially been applied to
browsers in the past [11], [50]. However, attackers may
fall back to alternatives such as a counter thread as a
timer replacement [27]. General countermeasures against
cache-based side channels have been discussed in prior
work extensively [28], [33], [52], [54], but none were
implemented on a large scale. Consequently, we consider
it next to impossible to reliably block an attacker from all
possible ways to generate precise timestamps.

Anomaly Detection [10]. During a prefetching-based
side channel attack, the attacker may execute code that
results in unusual values of performance counters. For
instance, counters related to cache activity or prefetch-
related events may increase at a higher rate than usual.
These counters can thus be observed to detect unusual
activities [15], [34], [53]. However, such a heuristic detec-
tion system will produce false-positive alerts, miss some
malicious events (false negatives), and introduce a con-
stant runtime overhead affecting all workloads. In addi-
tion, intrusion detection systems generally do not prevent
attacks but merely detect them after they have started.
Thus, we consider this mitigation strategy incomplete.

Security-Aware Core Assignment [8], [40]. For per-
core prefetchers, another possible mitigation is more ad-
vanced core assignment. On heterogeneous processors, a
vulnerable prefetcher may only be present on some of
the cores. In this case, security-critical or untrusted work-
loads could be assigned to invulnerable cores. Similarly,
a vulnerable per-core prefetcher could be disabled on one
of the cores, which could then be reserved for critical
workloads. In practice, however, it is not trivial to decide
which processes should be assigned to which core. In
addition, reserving a core for critical operations is likely to
reduce overall system performance: If critical workloads
are frequent or long-running, assigning them to a single
core will limit their throughput. If critical workloads are
rare or short-running, reserving one core for them will
result in the core idling most of the time.

Oblivious Execution [10]. Oblivious execution [36]
eliminates the side-channel effect of a secret-dependent
conditional. It executes both branches but persists only the
result of the correct branch in memory. Thus, the attacker
can no longer distinguish those branches: The resulting
timings and memory access patterns are always the same
(as long as the branches do not contain more secret-
dependent instructions). However, this approach comes
with a significant performance overhead. Rane et al. [36]
report a mean overhead of 16.1x.

Blinding [8]. A DMP may be triggered by a data value
that has a specific property, e.g., that looks like a pointer.



To ensure that such a prefetcher is not triggered by an
untrusted value, a mask can be added to the value before
it is stored in memory and removed after it is loaded again.
However, implementing this countermeasure is not trivial
and introduces computational and memory overhead.

Disabling the Prefetcher [8]-[10], [12], [42], [44].
If the CPU allows for controlling the prefetcher, the
most straightforward way to prevent any leakage from the
prefetcher is to disable it permanently. However, this coun-
termeasure comes with a significant performance decline
for workloads that benefit from prefetching, as we show
in Sections 6.5 and 6.6.

The general idea of disabling the prefetcher temporar-
ily has been briefly mentioned in the context of offensive
papers before [8], [42], but it has not been elaborated
further. No detailed design, implementation, or evaluation
has been provided. In particular, prior work did not make
any considerations beyond the ‘“naive approach”, which
we dismissed as incomplete in Section 5.1. Notably, no
integration with the scheduler was proposed, which is vital
to make the defense complete and easy to use. In addition,
the special case of SMT was not considered. PREFENCE
fills this gap.

Conclusion: Prior-Work Countermeasures Are
Costly or Incomplete. In summary, every prior-work
countermeasure violates one of our design goals stated
in Section 5.1. We consider constant-time programming
complex to implement, expensive at runtime, and inef-
fective against DMP-based side channels; clearing the
prefetcher’s state on context switches specific to attacks
that trigger the prefetcher in the attacker’s context, expen-
sive at runtime, and incomplete when the state is shared
across physical or SMT cores; mitigation of timing sources
and anomaly detection inherently incomplete approaches;
security-aware scheduling hard to implement in an effi-
cient way; blinding complex to implement, expensive at
runtime, and specific to DMP-based side channels; obliv-
ious execution and disabling the prefetcher permanently
expensive at runtime.

8.2. Prior Work on Hardware-Based Mitigations

In this paper, we focus on software-based mitigations
that can easily be applied and evaluated on current hard-
ware. However, for completeness, we also briefly discuss
countermeasures that require hardware modifications.

Choosing a different trigger [42]. Some attacks rely
on collisions on the prefetch trigger, e.g., the (partial or
complete) address of a load instruction. To mitigate such
attacks, the instruction address must not be used as the
only trigger. For example, a process identifier could be
added. Only if the process identifier and the instruction
address match, a prefetch can be triggered.

Partitioning the Prefetcher’s State [9], [10], [12],
[42]. Partitioning protects against accidentally triggering
a prefetch pattern in a wrong context. To avoid leakage
between privilege levels, the prefetcher could keep track of
the privilege level that a pattern belongs to. However, this
approach does not protect against attacks within the same
privilege level, e.g., between two user-space processes. To
distinguish between those, an additional process identifier
must be stored. Depending on the implementation, attack-
ers may still be able to prime the prefetcher with attacker-

controlled patterns that are then potentially evicted by
victim activity, leaking control flow information.

Extending the Instruction Set [40], [42]. An instruc-
tion could be added that flushes the prefetcher’s state, such
as the CPP RCTX instruction available on some ARM
CPUs [4], [5]. This instruction could then be called by the
operating system on context switches or when switching
between privilege domains. However, this approach only
works when the prefetcher is not shared among multiple
cores or SMT threads. Alternatively, a special load instruc-
tion to be used in security-critical code sections could be
introduced that does not influence the prefetcher’s state.

9. Conclusion

In this work, we addressed the challenge of efficient
defenses against side-channel attacks exploiting prefetch-
ers to leak secret information from a victim user-space
process. We started by providing the first systematic anal-
ysis of the existing 13 related attacks from literature, and
we showed that all rely on three main stages: prefetcher
training, prefetcher triggering, and cache extraction.

Our proposed countermeasure, PREFENCE, allows
vulnerable programs to ensure that they do not train the
prefetcher. More precisely, it enables processes to selec-
tively disable the prefetcher from user space, while en-
suring that parallel processes sharing the same prefetcher
on other cores or SMT siblings are considered as well.
In addition, issues in process re-scheduling are consid-
ered and handled transparently for the vulnerable process.
PREFENCE enables fine-grained control to minimize the
time the prefetcher is unavailable, while ensuring that the
critical prefetcher training attack stage cannot target the
victim process any longer. Our prototype implementation
of PREFENCE for an Intel x86_64 and an ARM Cortex-
A72 processor is a Linux kernel patch to the scheduler that
automatically ensures correct prefetcher activation state on
process re-scheduling. In addition, it provides processes
with a system call to request the prefetcher to be disabled.
Our PREFENCE implementation is open-source software.

We demonstrated the efficacy of our approach by
successfully mitigating two prior-work side-channel vul-
nerabilities with low overhead (less than 3%) on the
vulnerable functions. Our performance evaluation showed
that the performance impact of our solution on non-
security-critical code is around 1%. For security-critical
workloads, its performance impact depends on the way
PREFENCE is applied to the code; for a real-world web
server application, we showed that security-critical code
runs 15.8% (Intel) and 7.2% (ARM) faster on average
compared to prefetching being permanently disabled when
PREFENCE is applied in a relatively fine-grained manner.

In conclusion, we presented an easy-to-use and ef-
ficient scheduling-aware countermeasure to protect vic-
tim processes against prefetcher side channels, founded
on a systematic analysis of prior work on attacks and
countermeasures. We expect our countermeasure could
be extended to the general signaling of security-relevant
code to the kernel to allow for coordinated application of
countermeasures (e.g., DIT flags).
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Appendix A.
Prior Work on Prefetching-Based Attacks

In this section, we give a high-level overview of
prefetching-based attacks in prior work and explain our
dissection of these attacks into the five stages as illustrated
in Figure 2.

Shin et al. [44]. This paper exploits the Intel IP
stride prefetcher and targets the ECDH implementation
in OpenSSL. In the preparation phase (S1), the attacker
identifies memory lines in the OpenSSL shared library
code that are cached only conditionally depending on the
supplied input. These cache lines only appear in the cache
when an internal lookup table is accessed such that a
sequence of accesses forms a regular stride pattern. In
the reset phase (S2), these memory locations are flushed
from the cache by the attacker. Then, the attacker calls
the library. The library trains (S3) and triggers (S4) the
prefetcher only if the supplied input leads to memory
loads that form a stride pattern. The attacker probes the
cache lines through a cache-timing side channel (S5) to
decide whether the input triggered the prefetcher or not.
This prefetching-based primitive is then embedded in a
differential attack to recover the secret.

Augury [40]. This paper is the first to investigate the
data memory-dependent prefetcher (DMP) of the Apple
M1 SoC. It describes the prefetcher’s behavior when
multiple pointers, which are stored sequentially in mem-
ory (e.g., in an array), are loaded and dereferenced: The
DMP fetches subsequent pointers and dereferences them.
The authors present multiple approaches to exploit this
behavior.

The first approach (“Out-of-bounds reads”, Augury
OOB) assumes that a user secretly selects a pointer from
a finite list of candidate pointers. This pointer is stored
just behind an array of pointers in the victim’s memory.
The goal of the attacker is to find the chosen pointer
without accessing it architecturally. The attack is described
with Flush+Reload and Prime+Probe; we discuss the more
complex Prime+Probe variant. The attacker sets up an
eviction set for each of the candidate pointers (S1) and
loads them (S2). Next, all the pointers in the pointer array
are dereferenced to train the prefetcher (S3). When the
end of the array is reached, the prefetcher is triggered
to prefetch past the array bound (S4) and to dereference
the user-chosen pointer. By timing the access latency to all
candidate pointers using the eviction sets (S5), the attacker
decides which of the pointers was chosen.

In a second approach (Augury SLH), the authors dis-
cuss the impact of the DMP on code that uses speculative
load hardening (SLH) [29] to protect against Spectre
attacks [23]. The core idea of SLH is to verify untrusted
(e.g., user-supplied) memory offsets during speculative ex-
ecution to prevent speculative out-of-bounds accesses. The
compiler adds branchless code that replaces out-of-bounds
offsets with a safe value (often 0) using binary arithmetic.
In Augury’s example, a code snippet trains the prefetcher
by iterating over a pointer array (S3). While SLH prevents
speculative out-of-bounds reads, the prefetcher is still able
to prefetch past the array bound when triggered by an
access to the last array element (S4). Thus, a pointer that
is stored just behind the pointer array can be fetched and
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dereferenced by the prefetcher, leaving traces in the cache
that can be recovered (S5).

A third approach (Augury Addr) describes how the
DMP can be used to determine whether an address is a
valid (mapped) virtual memory address or not. To this
end, the attacker sets up an array of 3 pointers, where
the third pointer is the address to test (S1). The attacker
ensures that the array is not cached (S2). Next, the attacker
traverses the array in speculative execution and within the
context where the mapping is to be checked. This trains
the prefetcher (S3). As the DMP requires at least three
valid addresses to be triggered for the first time (S4),
prefetching will only happen if the address is valid. The
attacker tests the cache state of the first out-of-bounds
element after the array of pointers (S5). If this element is
cached, the tested address is valid; otherwise, it is invalid.

AfterImage [10]. This work exploits the Intel IP
stride prefetcher in five different ways. Generally, these
approaches exploit collisions on the instruction pointer
(IP) address. The exploited prefetcher identifies patterns
stored in its internal state based on the instruction address
of the load instruction that caused the load. However, this
instruction address is internally truncated to the 8 least
significant bits. Consequently, the attacker can cause a col-
lision by aligning a load instruction in their own code such
that its 8 least significant bits match the respective bits of
the instruction address in the victim code. The prefetcher
is then unable to distinguish those two instructions from
different contexts.

In AfterImage variant 1, the prefetcher is used to
leak the control flow of a victim process. This attack is
described with same-process and cross-process scope as
well as using Flush+Reload and Prime+Probe for extrac-
tion. We focus on the cross-process, Prime+Probe variant,
which we consider the more complex one. The attacker’s
goal is to determine whether a branch in a victim process
is taken or not taken. To this end, the attacker selects one
load instruction from each of the two potential code flows
in the victim process and aligns two load instructions
in their own process to them (S1). The attacker further
prepares (S1) and loads (S2) eviction sets on the load
targets in the victim process. The attacker then primes the
prefetcher (S3) by training it in the attacker’s process.
Then, a context switch to the victim process happens,
where the branch is either taken or not taken and the re-
spective load instruction is executed, further (mis)training
the prefetcher (S3). As the prefetcher was pre-trained,
this load will further trigger prefetching after the load
target of the victim instruction (S4). The attacker extracts
those prefetching effects from the cache by reloading the
eviction sets (S5).

Afterlmage variant 2 exploits the stride prefetcher to
determine whether a branch is taken in the kernel space.
The authors attack a system call handler that operates on
a memory buffer passed in from user space. The idea
is similar to variant 1. However, aligning to a kernel
instruction is more difficult, as the instruction address is
unknown. For this reason, the attacker first determines the
offset by testing all 28 = 256 possibilities in a process
called IP matching (S1). Then, the prefetcher is primed in
the attacker process (S3). The system call is issued. If the
branch is taken, the prefetcher will be further (mis)trained
(S3) and triggered (S4) to prefetch memory from the

buffer. After returning from the system call, the attacker
probes the cache state of the respective locations in shared
memory (S5).

In addition, AfterImage describes an attack on SGX.
This attack does not exploit a collision. The goal is to leak
control flow from an enclave. In the described setting, a
load instruction is executed in a loop within the victim
enclave. The instruction loads from a shared buffer that
is passed from user space into the enclave. The stride of
the loads is secret-dependent. This memory activity trains
(S3) and triggers (S4) the prefetcher. After returning to
user space, the attacker process recovers the stride by
inspecting the cache state of the shared buffer (S5).

The paper further presents an attack on the RSA imple-
mentation of MbedTLS. The victim code contains secret-
dependent branches that the attacker wants to monitor. To
this end, the attacker first identifies suitable load instruc-
tions to align to by reverse-engineering the victim binary
(S1). Next, the attacker primes the prefetcher in their own
memory to a high confidence level (S3) and switches
to the victim code. The victim executes a colliding load
instruction and re-trains the prefetcher (S3). As the loaded
address will likely not match the previously trained stride,
the confidence will be lowered. After switching back
to the attacker process, the attacker tries to trigger the
prefetcher in their own memory again (S4) and extract
the prefetcher’s behavior from the cache state (S5). The
attacker will only observe prefetching effects if the confi-
dence was not lowered by the victim, i.e., if the monitored
branch was not taken.

Finally, the authors present a prefetching-based syn-
chronization primitive that operates similar to the RSA
attack. They envision this primitive could be used as a
trigger for a power-based side-channel attack, for exam-
ple to detect the beginning of a cryptographic operation.
Again, the attacker begins by identifying a load instruction
to align to in the victim code (S1). The prefetcher is then
primed on a colliding load instruction in the attacker’s
process to a high confidence level (S3). The attacker now
switches frequently between victim and attacker code. As
soon as the victim executes the target instruction, the
prefetcher will be trained (S3) and the confidence will
be lowered. The attacker tries to trigger the prefetcher
(S4) and inspects the prefetcher’s activity in the cache
(S5). Once the prefetcher can no longer be triggered,
the attacker knows that the victim executed the target
instruction. In that case, the attacker raises a trigger signal.

Xiao et al. [S1]. This paper uses the Intel IP stride
prefetcher to attack an (undisclosed) AES implementation.
To this end, the attacker monitors the cache state of the
two memory lines just before and after the S-box. Depend-
ing on the access pattern to the S-box, which depends on
plaintext and key, different prefetching activity in those
cache lines is to be expected. After identifying the cache
lines to monitor (S1), the attacker flushes them (S2). Then,
the encryption is performed, potentially training (S3) and
triggering (S4) the prefetcher. Finally, the cache state is
inspected using a timing-based side channel (S5).

FetchBench [42]. This paper exploits the Spatial
Memory Streaming (SMS) prefetcher in the ARM Cortex-
A72 processor to attack the T-table-based AES imple-
mentation of MbedTLS. The attacker’s goal is to extract
the encryption key from the victim process. To this end,



an instruction address collision is exploited. The authors
first align load instructions in the attacker process with
those in the victim process that load secret-dependent
values (S1). They further identify a cache line that is
accessed shortly before the victim process processes the
secret (S1). This line, as well as a local probe array in the
attacker process, are then flushed (S2). Next, the victim
process encrypts an attacker-supplied plaintext using its
own secret key. During encryption, the victim accesses
multiple elements of a lookup table. The accesses to the
lookup table train the prefetcher (S3). The attacker then
switches into their own process using an inter-processor
interrupt and triggers the prefetcher there (S4), making the
prefetcher transfer the pattern learned in the victim context
into the attacker’s context. Finally, the attacker deduces
the prefetcher’s activity from the cache state (S5).

PrefetchX [9]. This paper uses the Intel eXtended Pre-
diction Table (XPT) prefetcher to exploit the RSA imple-
mentations of MbedTLS and GnuPG. The XPT prefetcher
is the only known prefetcher that is attached to the last-
level cache (LLC) and thus shared across cores. It keeps a
list of recently accessed pages and counts the number of
cache misses per page. Once such a miss counter surpasses
a fixed threshold for a page, the prefetcher effectively
bypasses the LLC for future loads from that page.

The attacker and victim processes run on different
cores. To start from a clean cache state, the attacker
sends a signal to the victim process (S2). This enforces a
context switch into the kernel, and the resulting overhead
evicts the target cache line. Next, the attacker fills the
prefetcher’s state with pages that they control (S3). Then,
the victim executes a code section containing a secret-
dependent load. If the load is performed, the prefetcher’s
state is updated and one of the attacker’s pages is
evicted from the state (S3). The attacker then checks the
prefetcher’s state by triggering it on their own pages (S4)
and measures whether the prefetcher still triggers or not
(S5).

GoFetch [8]. This paper revisits the DMP prefetcher
of the Apple M1 SoC and its successors and discovers
that the DMP is more than a pointer array prefetcher: It
can be triggered by merely loading a single address from
memory, even without dereferencing it.

The paper presents attacks on four real-world tar-
gets: the Go implementation of the RSA cryptosytem,
the OpenSSL implementation of the Diffie-Hellman key
exchange, and implementations of the post-quantum al-
gorithms CRYSTALS-Kyber and CRYSTALS-Dilithium.
All attacks are based on the same idea. The attacker crafts
malicious inputs that, when combined with secrets during
computation of the target algorithm, result in intermediate
values that form a valid pointer if and only if the secret
fulfills a certain condition. The prefetcher is only activated
if the condition is fulfilled, leaking information about the
secret. On a high level, those attacks perform the following
steps. First, an attacker process prepares (S1) and loads
(S2) eviction sets that evict the pointer’s anticipated lo-
cation and target address. Then, the input is crafted and
supplied to the victim process. If the condition is fulfilled,
an intermediate value in the victim context forms a pointer.
Once this pointer is loaded, the prefetcher is trained (S3, it
updates its history) and triggered (S4, it dereferences the
pointer). Finally, the attacker process re-loads the eviction

sets (S5) to determine whether the condition was fulfilled
or not.

Notably, these attacks apply even to constant-time
implementations, which only guarantee constant execution
time and (architectural) memory access locations, but do
not constrain intermediate values.

Appendix B.
PREFENCE Efficiency Evaluation: Overhead
on Context Switch and System Call

In this section, we perform two additional experiments
on the efficiency of our PREFENCE implementation. We
measure the fixed overhead caused by the additional kernel
code that needs to be executed on every context switch
and the overhead of performing a system call in order to
set or clear the prefetch_disable bit of a process. Both
experiments were only performed on the Intel CPU.

B.1. Fixed Overhead on Context Switch

Experiment. We evaluate the fixed overhead that our
PREFENCE implementation adds to every context switch.
To this end, we measure the execution time of a context
switch in the stock kernel and compare it to the execution
time in our patched kernel.

We implement two user-space processes that share a
memory page. Both processes are pinned to the same CPU
core. The first process constantly writes the current value
of a high-resolution timer (retrieved from the rdtscp
instruction) to shared memory. The second process reads
the timer value from shared memory and computes the
difference to the current timestamp. When the first process
is scheduled, it keeps incrementing the timestamp written
to memory until it is descheduled. Next, the second pro-
cess is scheduled, computes the timestamp difference and
logs the result. We filter out “zero samples” caused by the
second process being re-scheduled before the first one, i.e.,
where the timestamp in memory has not been incremented
compared to the last execution of the second process. We
run this experiment on an idle system to maximize the
probability of a context switch between our two processes.

Results. We measure the execution time of a context
switch in three scenarios on our Intel CPU: (1) with the
stock kernel, (2) with our patched kernel, switching be-
tween two processes with the prefetch_disable bit cleared,
(3) with our patched kernel, switching from a process with
the prefetch_disable bit cleared into a process with the
bit set. We repeat each experiment until 10,000 non-zero
samples have been collected.

We present our results in Figure 9. Not surprisingly,
the stock kernel has the smallest median context switch
execution time of 3766 time units. Switching between
two normal processes on our patched kernel requires
3842 units (median), an negligible increase of 76 units or
2%. When the prefetcher’s state needs to be changed on
context switch, the median execution time is 4158 units,
an increase of 392 units or 10% compared to the stock
kernel.
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Figure 9. Context switch overhead on the stock kernel and on our
patched kernel. For the patched kernel, we evaluate transitions between
normal processes (prefetch_disable bits cleared) and the transition into a
security-critical process (from bit cleared to bit set). The added overhead
is negligible.

B.2. One-off Overhead of the System Call

Experiment. We set up a user-space process that
performs the prctl system call twice, once to set the
prefetch_disable bit and once to clear it again. Before
and after each of the system calls, we use the rdtscp
instruction to get high-precision timestamps. Finally, we
compute the difference between the timestamps.

Results. We repeat the experiment 10,000 times on
our Intel CPU. Figure 10 shows the results. We note that
the median duration of both system calls is around 430
units. The median duration of the system call to set the
flag is negligibly longer than the median duration of the
system call to clear it. For comparison, the overhead of
the system call is roughly in the same order of magnitude
as a memory load that misses the cache (in the OpenSSL
experiment in Section 6.3, we observed that a cache miss
takes around 340 units on the same system).

Appendix C.
Prefetch Disable Flags on Various Processors

In Tables 2 to 4, we list all MSR flags related to
disabling hardware prefetchers that we could find in
processor documentation provided by Intel, AMD and
ARM, respectively. For Intel, we considered the latest
Software Developer’s Manual (June 2024) [21] as well
as additional documentation [16], [18], [20]. For AMD,
we considered all BIOS and Kernel Developer’s Guides
and Processor Programming References available from
the AMD Documentation Hub' (as of July 2024). For
ARM, we considered all Technical Reference Manuals
available from ARM’s documentation page?® starting from
the Cortex-A53 (as of July 2024). We note that we only
include officially documented disable flags here, as those
are the flags that operating system vendors could safely
rely on; processors may implement additional (undocu-
mented) flags.

1. https://www.amd.com/en/search/documentation/hub.html
2. https://developer.arm.com/documentation/
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Figure 10. Overhead of a system call that sets or clears the prefetch_-
disable bit.

We find that the interfaces for controlling hardware
prefetchers differ widely between processors, even for
models from the same vendor. Thus, abstraction at the
operating system kernel level is required to provide a
unified interface to user-space processes.

Appendix D.
Statement on Data Availability

Alongside this paper, we publish an artifact pack-
age that contains the proof-of-concept implementations of
PREFENCE used in this paper (suitable for some Intel
and ARM processors), as well as the code to run the
experiments in Section 6 and Appendix B. For license
reasons, we cannot include the source code of SPEC
benchmarks (used in Section 6.5). However, we provide
the configuration files that we used to run those bench-
marks, so that other researchers can still reproduce those
experiments with their own copy of SPEC benchmarks.

Our artifact package is available at https://gith
ub.com/scy-phy/PreFence.
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TABLE 2. PREFETCH DISABLE FLAGS ON INTEL PROCESSORS

Microarchitecture Model-specific registers, bits

NetBurst IA32_MISC_ENABLE[9,19]

Core IA32_MISC_ENABLE[9,19,37,39]
Nehalem MSR_MISC_FEATURE_CONTROL[0:3]
Sandy Bridge MSR_MISC_FEATURE_CONTROL[0:3]
Ivy Bﬁdge MSR_MISC_FEATURE_CONTROL[0:3]
Haswell, Haswell-E MSR_MISC_FEATURE_CONTROL[0:3]
Broadwell MSR_MISC_FEATURE_CONTROL[0:3]
Skyhke MSR_MISC_FEATURE_CONTROL[0:3]

Cascade Lake

Copper Lake

Caby Lake

Coffee Lake

Cannon Lake

Comet Lake

Ice Lake

Tiger Lake

Alder Lake P-Core

Alder Lake E-Core

Raptor Lake P-Core

Raptor Lake E-Core

Meteor Lake (Core 7 Ultra)

Xeon Phi Processors 06_57H/06_85H
Silvermont (Atom)

Goldmont (Atom)

Goldmont Plus (Atom)

Tremont (Atom)

CPUs with CPUID. (EAX=0x07,ECX=2) :EDX [

31=1
CPUs with CPUID. (EAX=0x07,ECX=0) :EDX[29]=

MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_MISC_FEATURE_CONTROL[0:3]
MSR_PREFETCH_CONTROL[0:3, 5]

MSR_O0x1A4([0,2:5], MSR_0x1320[43], MSR_0x1321[43]

MSR_PREFETCH_CONTROL[0:3, 5]

MSR_0x1A4([0,2:5], MSR_0x1320[43], MSR_0x1321[43]

MSR_PREFETCH_CONTROL[0:8]
MSR_PREFETCH_CONTROL[0:1]
MSR_MISC_FEATURE_CONTROL[O, 2]
MSR_MISC_FEATURE_CONTROL[0, 2]
MSR_MISC_FEATURE_CONTROL[O, 2]
MSR_MISC_FEATURE_CONTROL[0, 2]
IA32_SPEC_CTRL[8] (DDPD_U)
IA32_UARCH_MISC_CTL[12] (DOITM)

TABLE 3. PREFETCH DISABLE FLAGS ON AMD PROCESSORS

Processor family

Model-specific registers, bits

Family 10h (K10)

Family 11h (K8/K10)

Family 12h (K10)

Family 14h Models 00h-OFh (Bobcat)

Family 15h Models 00h-OFh (Bulldozer/Piledriver)

Family 15h Models 10h-1Fh (Piledriver)
Family 15h Models 30h-3Fh (Steamroller)
Family 15h Models 60h-6Fh (Excavator)
Family 15h Models 70h-7Fh (Excavator)
Family 16h Models 00h-OFh (Jaguar)
Family 16h Models 30h-3Fh (Puma)

MSRC001_1022[
MSRC001_1022[
MSRC001_1022[
MSRC001_1022[
MSRC001_1022[
MSRC001_1022[
MSRC001_1022[
MSRC001_101C[
MSRC001_101C[
MSRC001_1022[
MSRC001_1022[

, MSRC001_102B
, MSRC001_102B
, MSRC001_10A0
, MSRC0O01_10A0

Family 17h Models Olh, O8h, Revision B2 (Zen/Zen+) —

Family 17h Model 18h, Revision B1 (Zen+)
Family 17h Model 20h, Revision Al (Zen)
Family 17h Model 31h, Revision BO (Zen 2)
Family 17h Model 60h, Revision Al (Zen 2)
Family 17h Model 71h, Revision BO (Zen 2)
Family 17h Model AOh, Revision AO (Zen 2)
Family 19h Model O1h, Revision B1 (Zen 3)
Family 19h Model 11h, Revision B1 (Zen 4)
Family 19h Model 21h, Revision BO (Zen 3)
Family 19h Model 51h, Revision Al (?)
Family 19h Model 61h, Revision B1 (Zen 4)
Family 19h Model 70h, Revision A0 (Zen 4)

MSRC000_0108([0:3,5]
MSRC000_0108[0:3,5]

MSRC000_0108([0:3,5]
MSRC000_0108[0:3,5]

[
[
[
[

[T

8
8
]
]

]
]

—: No documented prefetch disable flags.




TABLE 4. PREFETCH DISABLE FLAGS ON ARM PROCESSORS

Processor Model-specific registers, bits

Cortex-A53 CPUACTLR_EL1[13:15,22]

Cortex-A57 CPUACTLR_EL1[21,32,56]

Cortex-A72 CPUACTLR_EL1[21,32,42,56]
Cortex-A73 L2CTLR_EL1([21], ECTLR[7,8,10]
Cortex-A75 CPUECTLR[6:10]

Cortex-A76 CPUECTLR_EL1[5,7,8,15,51]
Cortex-A76AE  CPUECTLR_EL1[5,7,8,15,51]
Cortex-A77 CPUECTLR_EL1[5,7,8,15,51]
Cortex-A78 CPUECTLR_EL1([4:5,8,9,15,51,61:63]

Cortex-A78C CPUECTLR_EL1[4:5,8,9,15,51,61:63]

Cortex-A510 AArch64_imp_cpuectlr_ell[13:14], AArch64_imp_cmpxectlr_ell[26]

Cortex-A520 AArch64_imp_cpuectlr_ell[13:14], AArch64_imp_cmpxectlr_ell[26]

Cortex-A710 CPUECTLR_EL1[4:5,8,9,15,51,61:63]

Cortex-A715 AArch64_imp_cpuectlr_ell[12,41:52], IMP_CPUECTLR2_EL1[8:9]

Cortex-A720 AArch64_imp_cpuectlr_ell[12,41:52,56:57], AArch64_imp_cpuectlr2_ell[8:9,21]

Cortex-X1 CPUECTLR_EL1[4:5,8,9,15,51,61:63]

Cortex-X1C CPUECTLR_EL1([4:5,8,9,15,51,61:63]

Cortex-X2 IMP_CPUECTLR_EL1[4:5,8,9,15,51,61:63]

Cortex-X3 AArch64_imp_cpuectlr_ell[4:5,8,9,15,51,61:63]
Cortex-X4 AArch64_imp_cpuectlr_ell[4:5,8,9,15,51,61:63]

[
Cortex-X725 AArch64_imp_cpuectlr_ell[12,41:52,56:57], AArch64_imp_cpuectlr2_ell[8:9,21]
Cortex-X925 AArch64_imp_cpuectlr_ell[4:5,8,9,15,51,61:63]

Neoverse El CPUACTLR_EL1[10:15,22]

Neoverse N1 CPUECTLR_EL1[5,8,15,51]

Neoverse N2 AArch64_imp_cpuectlr_ell1[4:5,8,9,15,51,61:63]

Neoverse N3 AArch64_imp_cpuectlr_ell[12,41:52,56:57], AArch64_imp_cpuectlr2_ell[8:9,21]
Neoverse V1 CPUECTLR_EL1[4:5,8,9,15,51,61:63]

Neoverse V2 CPUECTLR_EL1([4:5,8,9,15,51,61:63]

Neoverse V3 CPUECTLR_EL1([4:5,8,9,15,51,61:63]
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